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ABSTRACT
Query optimizers are a performance-critical component in every
database system. Due to their complexity, optimizers take experts
months to write and years to refine. In this work, we demonstrate
for the first time that learning to optimize queries without learn-
ing from an expert optimizer is both possible and efficient. We
present Balsa, a query optimizer built by deep reinforcement learn-
ing. Balsa first learns basic knowledge from a simple, environment-
agnostic simulator, followed by safe learning in real execution. On
the Join Order Benchmark, Balsa matches the performance of two
expert query optimizers, both open-source and commercial, with
two hours of learning, and outperforms them by up to 2.8× in
workload runtime after a few more hours. Balsa thus opens the
possibility of automatically learning to optimize in future compute
environments where expert-designed optimizers do not exist.
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1 INTRODUCTION
Query optimizers are a performance-critical component in every
database and query engine, translating declarative queries into
efficient execution plans. These optimizers must navigate a vast
search space of candidate plans for each query, scoring each plan
with sufficient accuracy by leveraging statistics about the data.
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As a result of this complexity, optimizers are costly to develop.
Human experts may spend months to write a first version and years
to refine it. For example, PostgreSQL, one of the most widely used
databases in the world, has seen a continuous stream of changes
to its optimizer more than 20 years after it was released [6]. Due
to the high development costs, some relational systems settle for
heuristic-based optimizations and postpone building full-fledged
cost-based optimizers. As examples, Spark SQL was introduced in
2014 but only added a cost-based optimizer (CBO) in 2017, while
CockroachDB shipped the first version of its CBO in v2.1 after “9
months of intense effort” [11].

Instead of having human experts spend years developing a state-
of-the-art optimizer, in this paper we ask whether it is possible to
use machine learning to learn to optimize queries without learning
from an existing expert optimizer. We answer this question affir-
matively by designing and implementing Balsa, a learned query
optimizer that can match or even exceed the performance of expert-
built query optimizers (both open-source and commercial).

Balsa leverages deep reinforcement learning (RL), which has
been successfully employed to learn complex skills [3] and exceed
human experts at playing games [26, 27, 33]. RL consists of an
agent that learns to solve a task by repeatedly interacting with an
environment. The agent observes the environment’s state and takes
an action to maximize a reward. If the actions lead to improved
rewards, they are reinforced, i.e., the agent is updated to make these
actions more likely in the future. For a learned optimizer agent, such
as Balsa, the environment is the database; a state is a partial plan
for a query; an action is to add operators to the partial plan, and
the reward for a complete plan is its execution latency (negated).
Using this feedback loop, Balsa learns by trial and error to become
increasingly better at generating query execution plans.

In fact, the promise of RL for query optimization has been shown
by several recent projects [13, 16, 17]. However, these methods
assume the availability of a mature query optimizer to learn from.
In contrast, Balsa does not learn from such an expert optimizer. To
our knowledge, Balsa demonstrates for the first time that learning
to optimize queries without learning from an expert optimizer is both
possible and efficient. This can have a far reaching impact, as it paves
the road towards automatically learning to optimize in new data
systems [19, 20] where a mature optimizer does not exist.

A unique challenge in learning to optimize queries without an
expert optimizer’s guidance is that most execution plans for a query
are slow—sometimes orders of magnitude more expensive than the
optimal plan [14, 15]. At the beginning of the learning process, the
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agent has no prior knowledge, so the probability of selecting such
disastrous plans is high, which may prevent any progress. This is a
unique characteristic of query optimization that is not shared by
other successful RL applications such as games. Indeed, with most
games (e.g., AlphaGo [26], MuZero [23]), a “bad” action typically
leads to a game ending quicker. As a result, bad actions do not
hinder learning in those environments.

To avoid disastrous plans, Balsa employs simulation-to-reality
learning [30]. In the “simulation” phase, Balsa quickly learns from a
simulator how to avoid disastrous plans without executing queries,
while in the “reality” phase it learns from real executions to produce
high-performance plans. The simulator gives cost feedback to the
agent by using a basic, logical-only cost model with a cardinality
estimator. For convenience, we use PostgreSQL’s cardinality esti-
mator, a simple histogram-based method [14]. We pick an existing
estimator since, unlike an optimizer, a cardinality estimator is ag-
nostic to the execution environment, so the same estimator can be
used for any environment. (In our evaluation, we use PostgreSQL’s
estimates for another commercial engine.) Moreover, the estimator
needs not be high-quality for effective simulation. In fact, Post-
greSQL’s estimates can exhibit orders of magnitude errors [14], and
we find that even injecting noises to these estimates does not impact
Balsa’s performance (§10). This is because Balsa only uses the sim-
ulation to learn to avoid disastrous plans, not to reach expert-level
performance. Therefore, basic cost models and estimates suffice.

Next, to vastly improve over the imperfect knowledge acquired
from the simulator, Balsa learns in the real environment by actually
executing queries. While the simulation knowledge enables the
agent to avoid the worst plans, it can still stumble onto bad plans,
causing unpredictable stalls in the learning process. Balsa addresses
this challenge by using timeouts. A query’s timeout is set to its best
latency so far during learning. If a plan times out, we assign it a
predefined low reward (as we do not know its true reward). If the
plan finishes, we tighten the timeout for future iterations. Thus,
timeouts bound each learning iteration’s runtime, ensuring safe
execution that eliminates unpredictable stalls.

Finally, an RL agent must balance exploiting past experiences
with exploring new ones to escape local minima. The classic solu-
tion is random exploration, i.e., occasionally pick a random plan.
Unfortunately, this standard strategy is ineffective, since random
plans in the search space are likely to be highly expensive. Instead,
Balsa explores from a set of probably good plans. During exploration,
Balsa generates several best predicted plans (instead of the best),
then picks the best unseen one out of them. This safe exploration
approach improves Balsa’s plan coverage and performance.

Given a target dataset, Balsa is trained by repeatedly optimiz-
ing a set of sample queries by trial and error. After training, we
test its generalization performance on a new set of unseen queries
for the same dataset. We find that all three components of Balsa—
simulation learning, safe execution, safe exploration—boost its gen-
eralization. They expose Balsa to a higher quantity and variety of
plans, thereby enabling it to optimize new queries more robustly—a
trait we believe is essential for the practical deployment of learned
optimizers. We further propose using diversified experiences to en-
hance generalization (§6). We study Balsa’s generalization in depth
in our evaluation (§8.2, §8.5), and find that it achieves better perfor-
mance than two expert optimizers on unseen queries.

We call our approach “Bootstrap, Safely Execute, Safely Explore”,
hence Balsa1 for short. To our knowledge, Balsa is the first learned
optimizer that does not rely on plans (demonstrations) generated by
an existing expert optimizer. On the Join Order Benchmark [14], a
complex workload designed to stress test optimizers, Balsa matches
the performance of two expert optimizers with two hours of train-
ing, and outperforms them by 2.1–2.8× after a few more hours.

In summary, we make the following contributions:

• We introduce Balsa, a learned query optimizer that does not learn
from an existing, expert optimizer.
• We design a simple approach for learning a query optimizer
without expert demonstrations: bootstrapping from simulation
(§3), safe execution (§4), and safely exploring the plan space (§5).
• We propose diversified experiences, a novel method to further
enhance training and generalization performance (§6), including
generalizing to unseen queries with highly distinct join templates.
• Balsa can outperform both an open-source (PostgreSQL) and a
commercial query optimizer, after a few hours of training (§8).
• We show that, despite not learning from an expert optimizer,
Balsa outperforms the prior state-of-the-art technique that does.

Balsa is open sourced at https://github.com/balsa-project/balsa.

1.1 Differences from Prior Work
To highlight Balsa’s contributions, we briefly compare with the
most related work and defer a complete discussion to §9.

DQ [13] learns from an expert optimizer’s cost model. As such,
its performance is bounded by the quality of the cost model, which
can be inaccurate. Neo [17] takes an opposite approach by learning
from an expert optimizer’s plans and real executions. While this is
more accurate than using just a cost model, it is also more expensive.
Importantly, these solutions assume either an expert cost model or
an expert optimizer to bootstrap from.

In contrast, Balsa requires neither an expert cost model (as in DQ)
nor an expert optimizer (as in Neo) to learn from. Balsa removes
these fundamental assumptions by bootstrapping from a minimal,
logical-only cost model, followed by safe learning in real execution.
For the cost model, Balsa needs a basic cardinality estimator (§3.3).
We find inaccurate estimates can still lead to successful simulation,
and most of Balsa’s knowledge is learned after simulation (§10).

In summary, this paper tackles the new problem of learning to
optimize when an expert optimizer does not exist. (We discuss in
§10 how Balsa can better leverage an expert, if available, than prior
work.) To solve this problem, we develop or apply techniques new
to the domain of learned optimizers. These include sim-to-real (§2),
safe execution (§4.3), safe exploration (§5), on-policy learning (§4.1),
and enhancing generalization with diversified experiences (§6).

2 BALSA OVERVIEW
Balsa’s goal is to learn to optimize queries for a given dataset and
an execution engine. We assume a training workload is available.
At test time, Balsa is asked to optimize unseen queries issued for
the same dataset, which can contain new filters and join graphs
that are different from those in the training queries.

1Balsa wood is famous for its light weight.
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Figure 1: Balsa’s architecture. Balsa learns to optimize queries by ex-
ecuting plans and observing their latency feedback from an engine.

Balsa learns by trial and error. It optimizes the training queries,
producing different plans, then executes them on the engine to
observe their runtimes. Based on the runtime feedback, Balsa up-
dates itself to correct mistakes and reward good decisions. As the
feedback loop repeats, Balsa gets better at generating good plans.

After training, Balsa can be deployed to optimize an unseen test
set of queries. The agent is evaluated by the performance of training
plans produced, the performance of testing plans produced (i.e., its
generalization ability), and its learning efficiency.

Throughout learning, Balsa accesses the underlying execution
engine only to execute plans and observe their runtimes, and does
not learn from an existing optimizer. This requirement is informed
by the fact that many data systems have execution engines built
long before an optimizer becomes available (§1).

Assumptions. We assume the database content is kept static. Up-
dates to the schema, appends, or in-place updates can be handled by
retraining. This assumption implies that the agent need not solve a
learning problem with a shifting distribution. Another assumption
is that Balsa currently optimizes select-project-join (SPJ) blocks.
This is in line with the classical treatment [24] of decomposing a
query into simple SPJ blocks and optimizing them block-by-block.

2.1 Approach
Balsa’s architecture is shown in Figure 1. It consists of three ba-
sic components: bootstrapping a value network in a minimal cost
model, fine-tuning the value network in real execution, and using
a tree search algorithm to build query plans.

Classical design: cost models + enumeration. The classical op-
timizer design [24] uses an expert-implemented cost model that
takes in a plan2 and outputs a cost estimate:

C : plan→ cost

Costs are designed to reflect real execution performance: lower
costs should correlate with faster execution. The optimizer produces
plans by enumerating candidate plans and scoring them using the
cost model. For queries with a small number of tables, dynamic
programming (DP) is typically used as the enumeration module.

RL: value functions + planning. Instead of a cost model, which
estimates the immediate cost of a plan, Balsa learns a value function
that estimates the overall cost/latency of executing a query when

2We use “plans” to refer to both complete plans and partial subplans.

the plan is used as a partial step (subplan):

V : (query, plan) → overall cost or latency

Given a value function, we can use it to optimize queries by building
a plan bottom-up. Consider a query Q joining tables {A,B,C,D}.
To figure out the best first join to perform, we compare the overall
cost/latency, i.e., the value, of all valid first joins:

{A,B,C,D} ⇒ [V (Q,A ▷◁ B)); V (Q,A ▷◁ C); . . . ]

In other words, we use V to score the 2-table joins, which are all
partial subplans to complete query Q . The best first join is the one
with the lowest V value. Suppose A ▷◁ C is the best among them,
then we can continue the process, scoring all possible second joins:

{A ▷◁ C,B,D} ⇒ [V (Q,B ▷◁ D); V (Q,B ▷◁ (A ▷◁ C)); . . . ]

Continuing such planning leads to a complete query plan.
In contrast to the classical cost model, a value function directly

optimizes for the final, overall cost/latency of completing a query—
the real objective we care about. Moreover, a learned value function
can leverage data to tailor to a target database and hardware en-
vironment, potentially surpassing heuristics. If the optimal value
function V ∗ is known, then planning would produce optimal plans
for queries. Our goal is to approximateV ∗ as accurately as possible.

Learned value networks. Balsa approximates the optimal value
function by training a neural network, Vθ (query, plan) (with pa-
rameters θ ), on agent-collected data. The two inputs to the network
are featurized into query features (encoding joined tables and filters)
and plan features (encoding the tree structure of the plan and each
node’s operator type), respectively.

We learn the value function in two stages. First, we learn param-
eters θsim in a fast simulation environment backed by a minimal
cost model. Next, we initialize parameters θreal ← θsim and start
fine-tuning the value function in real execution. The two stages
produce the value networks3:

Vsim : (query, plan) → overall cost

Vreal : (query, plan) → overall latency

After training, Vreal is used with planning to optimize new queries.

Step 1: bootstrapping from a minimal cost model (§3). Balsa
starts learning in a “simulator” of query optimization, i.e., a cost
model. The key advantage of using a simulator is that the agent can
learn about disastrous plans without executing them in the initial
phase of learning. The agent bootstraps initial knowledge against
an inaccurate but fast-to-query cost model, which provides rapid
feedback (cost estimates) for the agent. The cost model is generic
and does not model the target engine or hardware.

To train the simulation model Vsim, we use a data collection
procedure (e.g., DP) to enumerate plans for the training query set
and ask the simulator for costs. Each query can yield thousands
of training data points, eventually producing a sufficiently large
dataset, Dsim = {(query, plan, overall cost)}. Vsim is then trained
on this dataset in a standard supervised learning fashion.

Step 2: fine-tuning in real execution (§4). Next, we transfer the
value function from doing well in the simulator to excelling in the
3For notational convenience, throughout the paper we use Vsim and Vreal to refer to
the simulation and real-execution models Vθsim and Vθreal , respectively.



real execution environment. The second stage starts by initializing
the real-execution model from the trained simulation model: Vreal
←Vsim. The fine-tuning ofVreal is performed in iterations of query
executions and model updates. In each iteration, Balsa uses its
current Vreal to optimize training queries; these plans are executed
with their latencies measured. Balsa then updates its Vreal on these
collected data to make its latency predictions more accurate.

A key challenge of learning in real execution is mitigating slow
plans. We address this as follows. By initializing from Vsim, Balsa’s
behavior in iteration 0 would be much better than random initial-
ization (which amounts to picking plans randomly). After iteration
0, Balsa uses timeouts (determined by earlier runtimes) to early-
terminate slow plans (§4.3) and also employs safe exploration (§5).

Planning with tree search. Balsa uses tree search planning on
top of the learned value function to optimize queries. The learned
Vreal guides the search towards the promising regions of the plan
space. As Vreal becomes more accurate, better plans can be found.

There are many tree search algorithms with different complexity-
optimality tradeoffs: from greedy planning, to advanced planning
algorithms such as Monte Carlo tree search. We opt for a middle
ground by using a simple beam search (§4.2).

In the next sections, we describe Balsa’s components in detail.

3 BOOTSTRAPPING FROM SIMULATION
The first stage of training aims to rapidly impart basic knowledge to
the agent, before it starts learning in long-running real executions.
We achieve this by bootstrapping Balsa in a minimal simulator, i.e.,
a cost model. It “simulates” query optimization in that query plans
are not actually executed. Instead, the agent issues a large amount
of plans to the simulator, which can quickly return cost estimates
(rather than measuring their runtimes) as feedback.

Why is a simulator necessary? The search space for a query is
vast and disastrous execution plans are abundant [14]. Unfortu-
nately, disastrous plans can stall learning progress: an agent may
wait for a long time for a slow plan to complete execution, before
learning that it is a bad action (if it ever finishes). This property is
in direct contrast to other RL use cases such as games. In game envi-
ronments (e.g., Go, chess, Atari), bad moves typically cause a game
to end sooner, as the opponent can exploit the agent’s mistakes.

A randomly initialized RL agent without training in simulation
can quite easily stumble upon such disastrous plans, especially in
the early stage of learning. We show this with a simple experiment:
we randomly initialize 6 agents without simulation learning, and
task them with optimizing 94 queries from the Join Order Bench-
mark (detailed setup described in §8.1). Plans produced by the me-
dian random agent execute 45× slower in workload runtime than
those produced by an expert optimizer, PostgreSQL. The slowest
agent is 79× slower than the expert (2.5 hours vs. 2 minutes).

Next, we describe the specific choice of cost model employed.

3.1 A Minimal Simulator
Balsa uses a minimal, logical plan-only cost model, which captures
the general principle that “fewer tuples lead to better plans”. It
is minimal, because it is free of any prior knowledge about the
execution engine and physical operators (e.g., merge vs. hash join).
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Figure 2: Simulation data collection and augmentation. For each k-
table join in DP, Balsa collects and augments all its enumerated
plans. Each bordered box yields a collected data point (see legend).

Formally, we use the Cout cost model [5]:

Cout (T ) =

{
|T | if T is a table/selection
|T | +Cout (T1) +Cout (T2) if T = T1 ▷◁ T2

where |T | denotes the estimated cardinality of a table (with filters
taken into account) or a join, obtained from a cardinality estimator
(§3.3). This cost model estimates the cost of a query plan simply by
summing up the estimated result sizes of all operators.

Tradeoffs of a minimal simulator. We choose a minimal cost
model to bake in as little prior knowledge as possible. The goal
of simulation learning is to steer the agent away from definitively
disastrous plans (when it starts the real execution phase), not to
instill expert knowledge. It is also generic: by not modeling physical
details, it can be used to bootstrap Balsa optimizing for any engine.

Due to its simplicity, the cost model is inherently inaccurate.
Balsa will learn to fill in missing knowledge and correct inaccuracy
when fine-tuning in the real execution phase (§4). As we will show
in §8.3.1, while Balsa can leverage pre-engineered, more sophisti-
cated cost models to accelerate training, they are not required for
Balsa to reach expert-level performance.

3.2 Simulation Data Collection
Given a simulator, we extract as much knowledge from it as possible
by applying a batched data collection procedure. The output is the
simulation dataset, Dsim = {(query, plan, overall cost)}, which is
used to train the value network Vsim. Specifically, we use dynamic
programming (also used by DQ [13]) to collect data.

Enumerating plans using dynamic programming. For each
query in Balsa’s trainingworkload, we run the classical Selinger [24]
bottom-up DP with a bushy plan space. It starts by enumerating
the best plans for all valid 2-table joins, composed out of base table
scans, then enumerating 3-table joins, etc. Each enumerated planT
will get a cost estimate C from the cost model4, generating a data
point (query=T , plan=T , overall cost=C), where query=T denotes
the original query restricted to the tables/filters of T . This data
point undergoes a data augmentation procedure, described below,
to yield a list of training data points to be added into Dsim.

The data collection is high-throughput: data is generated from
all enumerated plans, not just from the set of optimal plans in the
final DP results. This means that some suboptimal plans (under
the cost model) are included, which increase data variety and aid
learning. Figure 2 illustrates the data collection procedure.
4Balsa enumerates physical plans forCout , which will ignore the differences between
physical joins/scans and treat them as logical operators.



However, DP’s runtime may become too large for queries joining
many tables. Hence we skip collecting data from queries with ≥ n
tables (we set n = 12). Alternative strategies can also be applied.
For example, DQ proposes a partial DP scheme where the first j
levels of DP are run and the rest of the levels are planned greedily.

Data augmentation. Balsa employs a data augmentation tech-
nique proposed by DQ, where multiple data points are generated
from a single enumerated plan. Specifically, given a (query=T ,
plan=T , overall cost=C), each subplan T ′ of T will yield a distinct
data point with the same “overall query” T and the same cost:
{(query=T , plan=T ′, overall cost=C) : ∀T ′ ⊆ T }. This technique
significantly enriches the dataset Dsim in quantity and variety.

Interpretation. In RL terms, the augmentation reflects that all
states (the subplans) in a trajectory (the overall query/final plan)
share the same return, because intermediate rewards are defined to
be 0 and terminal rewards are the negative costs of final plans.

3.3 Discussion
We found simulation learning to be highly effective. At the start of
§3, we performed a simple experiment illustrating an up to 79× gap
between randomly initialized (i.e., no bootstrapping) agents and
an expert optimizer. Now, with simulation bootstrapping, agents
significantly shorten this gap to only 5.8× slower than the expert
at max—all without performing any real execution.

Cardinality estimator. The simulator needs a cardinality estima-
tor. As mentioned in §1, we pick PostgreSQL’s estimator for its
simplicity (per-column histograms; heuristically assumes indepen-
dence for joins; “magic constants” for complex filters) [14]. Balsa
does not learn from PostgreSQL’s optimizer (costs or plans).

We use an existing, textbook-style estimator for convenience,
not to rely on it for good performance. In fact, most of Balsa’s quality
improvements are learned after the simulation stage (§8.2, §10).

Alternative cost models. While Balsa advocates for a minimal
simulator, more prior knowledge can be plugged in by the user, if
desired. Other cost models may include progressively more physical
operator knowledge (e.g., the Cmm cost model [14] for in-memory
settings). New query engines optimizing for different objectives
(e.g., lower memory footprint) may either bootstrap Balsa withCout
(its fewer-tuples-are-better principle generally applies), or develop
another minimal cost model tailored to the objective.

4 LEARNING FROM REAL EXECUTION
Simulation learning imparts basic knowledge to the agent. But no
simulators can perfectly reflect the nuances of the real execution
environment. Therefore, we fine-tune the agent through query
executions in the real environment.

4.1 Reinforcement Learning of the Value
Function

Balsa learns the real-execution value network,Vreal(query, plan) →
overall latency, using reinforcement learning. The basic idea is that
the agent iteratively uses its current value network to optimize
queries and runs them, then uses the latency feedback to improve

itself. As this feedback loop runs, more execution data is collected,
and the agent’s Vreal becomes better at generating good plans.

Concretely, we start with Vreal initialized5 from Vsim and an
empty real-execution dataset, Dreal = ∅. Each iteration of learning
consists of an execute and an update phase.

Execute. The agent uses the currentVreal to optimize each train-
ing query q, producing an execution plan p. (Planning will be de-
scribed in §4.2.) Each plan is executed on the target engine with its
latency l measured. This results in one data point, (query=q, plan=p,
overall latency=l), which then undergoes the same subplan data
augmentation discussed in §3.2 to yield a list of data points:

Dreal += {(query = q, plan = p
′, overall latency = l) : ∀p′ ⊆ p}

Update. Balsa uses the collected data to improve its Vreal. We
perform stochastic gradient descent (SGD) with an L2 loss between
predicted and true latencies. Thus, mispredictions are corrected and
good predictions are reinforced. Data points (q,p, l) are sampled
from Dreal. However, model outputs Vreal(q,p) are updated not
towards l , but towards the best latency obtained so far of query q
that involves subplan p—a previously proposed technique [17]. The
latency label correction is motivated as follows. Consider query q
joining tables A,B,C,D. Subplan p = Join(A,B) may have appeared
in two executions, one with C joined next and one with D joined
next. They may have wildly different latencies, say 1 vs. 100 seconds.
As we wish to minimize latency, we define the lower latency l = 1
as the value of subplan p, because p could have made q run this fast.
The best latencies so far are calculated from the entire Dreal.

Thus, data collection and value function improvement alternate.
The algorithm can be thought of as either value iteration [29] or
expert iteration [4], and variants of it have been recently applied in
prior work in query optimization [17] (which, different from Balsa’s
updates, resets and retrains the value network across iterations) ,
theorem proving [21], and compute schedule optimization [2].

On-policy learning. Balsa employs a novel optimization on top
of the algorithm above by using on-policy learning. Updates toVreal
are performed only on the data points generated by the currentVreal.
In other words, SGD is performed on data points (q,p, _) sampled
from the most recent iteration of the dataset,Dreal, but not from its
entirety. The latter would yield data from many iterations ago and
is hence off-policy. Label correction still utilizes the entire dataset.

Intuitively, the most recent data points generally are the most
surprising to the agent and have faster latency labels, so it should
be beneficial to focus on them. Indeed, we find on-policy learning
to significantly accelerate learning, by reducing the number of SGD
steps per iteration, and improve the plan variety and performance
of Balsa (§8.3.4). On-policy learning makes Balsa’s training more
than 9.6× faster when compared to Neo [17], a prior state-of-the-art
method, which employs a full retraining scheme instead (§8.4). We
hypothesize that this techniquemay also improve other applications
of value functions that predict runtimes.

4.2 Plan Search
With the learned value network, Balsa uses a simple (best-first)
beam search to produce execution plans for a given query.

5Predictions naturally change from the scales of costs to latencies through fine-tuning.



Beam search operates on search states, each a set of partial plans
for the query. The search starts with a root state that contains all
tables (scans) in the query. A beam of size b stores search states to
be expanded, sorted by their predicted latencies6. At each step, the
best search state is popped from the beam, and all available actions
are applied to produce children states. Each action joins two eligible
plans in the current state with a physical join operator assigned,
as well as assigning scan operators if either side is a table. As a
search state is a set of partial plans (joined relations and non-joined
tables), applying actions to it will lead to at least one complete plan.

Then, all resulting children states are scored by the value network
Vreal and added to the beam, which keeps the top b states only. In
this way, the learned value network guides the search to focus on the
more promising regions of the plan space. Beam search terminates
when k complete plans are found. Balsa uses b = 20 and k = 10.

Top-k plans and exploration. Beam search is not guaranteed to
return globally optimal plans, and better plans may be found later
in the search. We thus continue searching until k complete plans
are found. At test time, the best plan out of this list is emitted.

Interestingly, at training time, obtaining a list of plans enables a
simple exploration technique on top. We treat all of these plans as
having reasonable optimality—so that it should be safe to explore
among them—and prioritize choosing the unseen plans as beam
search outputs. This technique is discussed in §5.

4.3 Safe Execution via Timeouts
A unique challenge in query optimization is the proliferation of
expensive plans in a vast search space, even when fast plans exist.
When Balsa learns by trial and error from real executions, it can
encounter long-running plans with unacceptably high latencies.

Balsa addresses this challenge by applying timeouts, a classical
idea in distributed systems. Since training proceeds in iterations,
earlier execution runtimes of the same trainingworkload are known
and can be used to bound future iterations.

Key to this mechanism is how to pick the initial timeout. Fortu-
nately, simulation learning allows us to assume that when the real
execution starts, the first ever plans produced for a set of training
queries have reasonable (albeit suboptimal) latencies.

Timeout policy. During iteration 0’s execute phase (just after sim-
ulation learning), the plans are allowed to finish execution in their
entirety—simulation learning is assumed to yield a non-disastrous
starting point. Let the maximum per-query runtime recorded be T .

For iteration i > 0, a timeout of S × T is applied for all agent-
produced plans, where S is a “slack factor”. By definition of T , for
any training query there exists a plan that can finish execution in
timeT . The slack’s purpose is to give some extra room and account
for runtime variance (Balsa uses S = 2).

If a plan has been executing longer than the current timeout, it is
terminated early, since it would be slower than earlier found plans
for the same query anyway. It gets assigned a large label7 instead

6Vreal takes a (query, plan) as input, while a search state is a set of partial plans for the
same query. To score the latter, we define V (state) ≡ maxplan∈state V (query, plan).
Intuitively, it reflects that a state’s latency is at least the maximum overall latency a
subplan is predicted to take.
7We use 4096 seconds throughout. It can also be set as some multiple of iteration 0’s
maximum per-query runtime.
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Figure 3: Safe exploration. For a training query, Balsa prioritizes
running the unseen plans of the top-k plans from tree search (explo-
ration). If all seen, the predicted-best plan is chosen (exploitation).

of its true, unknown latency. Such large labels serve to discourage
and steer the agent away from similar plans in future iterations.

Timeouts are progressively tightened. If an iteration finisheswith
a maximum per-query runtime T ′ < T , then the next iteration’s
timeout is tightened to S ×T ′. This progression ensures that the
timeout is neither too small, which prevents progress, nor too large,
which wastes efforts. It generates an implicit learning curriculum
for the agent with just-about-right difficulties.

In sum, we found the timeout mechanism to significantly acceler-
ate learning. It bounds the runtime of each iteration’s execute phase
and eliminates unexpected stalls, thereby achieving safe execution.

5 SAFE EXPLORATION IN REAL EXECUTION
While an RL agent exploits its past experience for good performance,
it must also explore new experience to escape local minima. To
achieve this, an exploration strategy can be used.

However, the abundance of slow plans, a unique characteristic
of query optimization, additionally requires safe exploration, i.e.,
disastrous plans be avoided. Random plans sampled from the search
space are slow [14], and choosing to explore them would again stall
learning. In our early experiments, a basic ϵ-greedy strategy (for
each training query, with a small ϵ probability a random plan is
sampled, a la QuickPick [34]) often selected inferior plans that led to
timeouts, slowing down the discovery of better plans and learning.

To achieve safe exploration, Balsa proposes a simple count-based
exploration technique. In essence, this family of methods encourages
an agent to explore a less-visited state or execute a less-chosen
action. We instantiate this principle in the following way.

Count-based exploration for beam search. Our goal is to pro-
vide a “trust region” of reasonable plans for the agent to explore.
To do so, beam search is asked to return top-k plans, sorted by as-
cending predicted latencies, rather than the single best plan found.
Instead of executing the best plan (i.e., with the lowest predicted
latency), we execute the best unseen plan of this list. If all top-k plans
have been previously executed—indicating sufficient exploration—
Balsa resorts to exploitation by executing the predicted-cheapest
plan. The visit counts of plans are cached by a hash table, which
adds low overheads, as past executions are already stored in Dreal.
Figure 3 illustrates this technique using example statistics (k = 3).

Intuitively, all of the top-k plans are probably good (since they are
produced by value network-guided beam search), so they should not
be chosen strictly by their predicted latencies (which are imperfect
estimates). Therefore, executing novel, unseen plans in this “trust
region” is both safe and exploratory.
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6 DIVERSIFIED EXPERIENCES
For learned query optimizers, robustly optimizing unseen queries
is essential. To further enhance Balsa’s generalization performance,
we introduce a simple method, diversified experiences.

Problem: mode diversity. As a value network is used to guide
plan search, an agent tends to only experience plans preferred by its
value network, and may gradually converge to plans with similar
characteristics, or a “mode” [36]. For example, if hash and loop joins
are equally effective for a workload, an agent may learn to heavily
use hash joins, while another may prefer loop joins. Either agent
can output good plans, as both operators are effective, but they may
lack the knowledge about plans that prefer alternative operators or
shapes. (While exploration increases plan variety, the new plans
are still relatively confined to a single agent’s mode.) Low mode
diversity can hinder an agent’s generalization to highly distinct,
unseen queries that require unfamiliar modes to be optimized well.

Diversified experiences. To enhance generalization, we propose
simply merging the experiences (Dreal) collected by several inde-
pendently trained agents (with different random seeds), and re-
training a new agent on top without any real execution. Figure 4
illustrates this process. Our insight is that this diversified experience
covers multiple modes. Thus, training on it produces a more robust
value network that generalizes better.

Table 1: Diversifying experiences: number of data collection agents
vs. number of unique plans after merging. Agents have highly di-
verse experiences. Trained on 113 JOB queries (details in §8.1).

Num. Agents 1 4 8

Num. Unique Plans 27K (1×) 102K (3.8×) 197K (7.3×)

Table 1 confirms this insight: the number of unique plans grows
almost linearly as the number of agents, showing that the plans
experienced by different agents are indeed highly diverse. We find
this simple method effective (§8.5), offering a way to trade more
compute, when available, for better performance.

7 BALSA IMPLEMENTATION
In this section we describe Balsa’s detailed training setup. At a high
level, to operate Balsa on a new engine it needs the following:
• An execution environment (executes plans; support for timeouts).
• Definition of the search space (the set of query operators and the
rules to compose them).

Optimizations. We optimize training by parallel data collection,
plan caching, and pipelining. Query executions are dispatched to
a pool of identical virtual machines each running an instance of

Planning Update
Execute plans

Agent
Environment

Iteration n Iteration n+1
(wait)

Figure 5: Pipelining agent planning and remote query execution.

the target database, using Ray [18]. Each VM runs one query at a
time to prevent interference. A plan cache is used so that reissued
plans have their prior runtimes quickly looked up and can skip re-
execution. Planning and remote query execution in each iteration
are pipelined (Figure 5): as soon as tree search (run by the main
agent thread) finishes planning a training query, the output plan
is sent for remote execution, and then planning for the next query
starts. The two stages thus overlap. The agent waits for all plans to
finish before performing value network updates.

Value network details. The value networks, Vsim and Vreal, are
implemented as simple tree convolution networks [17] (0.7M pa-
rameters, or 2.9MB). We also experimented with implementing
them using a Transformer [32] early on; this was found to be sim-
ilarly effective but had higher computational costs. When train-
ing or updating the value networks, we sample 10% of experience
data as a validation set for early stopping. The inputs to the value
network, query and plan, are encoded as follows. Each plan has
the same encoding as Neo [17]. A query is featurized as a vector
[table → selectivity] where each slot corresponds to a table and
holds its estimated selectivity (§3.3). Absent tables’ slots are filled
with zeros. This encoding is simpler than both Neo and DQ [13].

8 EVALUATION
We conduct an in-depth evaluation of Balsa. Our key findings are:
• Learning by trial and error, Balsa generates better execution
plans that run up to 2.1–2.8× faster in workload runtime than
two expert optimizers, PostgreSQL and “CommDB”8 (§8.2).
• Balsa takes a few hours to surpass the experts and a few more
hours to reach peak performance on the tested workloads (§8.2).
• Balsa outperforms learning from expert demonstrations [17],
a prior state-of-the-art approach, despite not learning from an
expert optimizer (§8.4). We also identify poor generalization as a
potential failure mode in this prior method.
• Diversified experiences significantly enhance generalization, in-
cluding to queries with highly distinct join templates (§8.5).
• Balsa learns novel preferences of operators and plan shapes (§8.6).
Additionally, we conduct detailed ablation studies to understand
the effect of Balsa’s design choices in §8.3.

8.1 Experimental Setup
We use the following workloads, in each of which Balsa is trained
on a set of training queries and tested on a set of unseen queries:

Join Order Benchmark (JOB) contains 113 analytical queries
designed by Leis et al. [14] to stress test query optimizers over a
real-world dataset from the Internet Movie Database. The queries
involve complex joins and predicates, ranging from 3-16 joins, aver-
aging 8 joins per query. We benchmark against two train-test splits,
each with 94 training and 19 test queries:

8A leading commercial DBMS. We anonymize its name due to its licensing terms [22].
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Figure 6: Balsa’s performance on PostgreSQL (left) and CommDB
(right): workload speedups achieved by Balsa plans over plans from
the respective expert optimizer. Each bar is the median of 8 runs.

• Random Split (denoted as “JOB”): a randomly sampled split.
• Slow Split (denoted as “JOB Slow”): the test set consists of the 19
slowest-running queries when planned by an expert optimizer.

Random Split tests an average situation, while Slow Split evaluates
when the test queries run maximally slower than the train queries.

TPC-H is a standard analytical benchmark where data and queries
are generated from uniform distributions. We use a scale factor of
10. We use 70 queries for training and 10 queries as the test set9.

Expert baselines and engines. We compare with the optimizers
of two mature expert systems: PostgreSQL (12.5; open-source) and
CommDB (a leading commercial DBMS; anonymized [22]). For each
expert, we compare Balsa’s plans with its optimizer’s plans executed
on that same engine. Balsa’s plans are injected by hints [7].

We use Microsoft Azure VMs with 8 cores, 64GB RAM, and
SSDs. Training is done on a NVIDIA Tesla M60 GPU. We configure
PostgreSQL with 32GB shared buffers and cache size, 4GB work
memory, and GEQO disabled—settings similar to Leis et al. [14].
We optimize CommDB extensively by following its tuning guides.

Balsa is trained for 500 iterations on the JOB workloads and 100
iterations on TPC-H due to its smaller search space. Balsa uses all
components and default values discussed in prior sections.

Expert performance10. We follow the guidance in Leis et al.
[14] to create all primary and foreign key indexes to make our
baselines run JOB much faster than that of prior work [17, 31]. This
also makes the search space more complex and challenging.

Metrics. We repeat each experiment 8 times and report the median
metric, unless specified otherwise. In train/test curves, we show the
entire min/max ranges in shaded areas. Workload runtime is defined
as the sum of per-query latencies. When reporting normalized
runtimes, they are calculated with respect to the expert’s runtimes.

8.2 Balsa Performance
We begin with end-to-end results, answering the following:
• What is the performance of Balsa on training and test queries?
• How many hours (and executions) does Balsa need to surpass ex-
pert performance and reach its peak performance, respectively?

9For TPC-H, we use templates 3, 5, 7, 8, 12, 13, 14 for training and template 10 for
testing, with 10 queries generated per template. We avoid the templates with advanced
SQL features (views, sub-queries) due to a limitation in the pg_hint_plan extension.
10PostgreSQL runtimes (train/test): JOB 115s/24s; JOB Slow 44s/98s, TPC-H 452s/49s.
We do not disable nested loop joins as suggested by Leis et al., because with indexes
created, this change actually made the expert run JOB 60% slower.

Performance. Figure 6 summarizes Balsa’s overall performance.
On all workloads, Balsa is able to start from a minimal cost model
and learn to surpass the expert optimizers by a sizable margin.

On PostgreSQL, Balsa achieves a 2.1× training-set speedup on
JOB, 1.3× on JOB Slow, and 1.1× on TPC-H. While speedups on
test sets slightly trail behind the training set speedups, Balsa can
still produce faster execution plans than the expert (e.g., 1.7× faster
on JOB). This shows that Balsa can generalize to unseen queries.

Balsa also outperforms CommDB’s optimizer. The speedups are
higher—1.1–2.8× for train and 1.0–1.9× for test sets—because Com-
mDB allows a much smaller search space than PostgreSQL by not
exposing bushy hints. (We estimate it to be 1000× smaller for an
average-sized JOB query, counting plan shapes and operators.) Balsa
thus explores the smaller search space more comprehensively.

Runtime of simulation learning. Table 2 shows simulation is
data-rich and takes dozens of minutes. As it is a small fraction of
real execution learning’s duration, we focus on the latter next.

Table 2: Simulation learning efficiency: sizes of simulation datasets,
time to collect data (inminutes), and time to train. Train times differ
due to early stopping. Means ± standard deviations are shown.

Workload Size Collection time (min.) Train time (min.)

JOB 516K 6.8 ± 0.1 24 ± 8
JOB Slow 551K 7.6 ± 0.1 28 ± 10
TPC-H 12K 1.1 ± 0.01 1.0 ± 0.2

Learning efficiency. Figure 7 shows the training performance of
Balsa as a function of elapsed time and the number of distinct query
plans executed. (The latter is called data/sample efficiency in RL
terms, as each execution is an interaction with the environment.)

Wall-clock efficiency. Figure 7a shows Balsa’s wall-clock effi-
ciency during the real execution stage. Balsa starts off several times
slower than the experts—this is the performance after bootstrap-
ping from a simple simulator. With just a few hours of learning,
Balsa matches the experts’ performance (on PostgreSQL: 1.4 hours
for JOB, 2.5 hours for JOB Slow, 1.5 hours for TPC-H; ∼0.5 hours
faster on CommDB due to its smaller search space). Balsa contin-
ues to improve and reaches its peak performance after around 4–5
hours. TPC-H has less room for optimization—it has much fewer
joins—so Balsa converges faster.

Data efficiency. Figure 7b shows data efficiency curves. It takes
a few thousand executions to reach the experts’ performance (on
PostgreSQL: 3.2K for JOB, 7.4K for JOB Slow, 0.7K for TPC-H; on
CommDB, ∼60% fewer plans are needed). The number of query
plans required is higher for workloads where the agent starts with
slower performance. Therefore, experiencing more plans helps
Balsa improve performance by a greater amount.

Non-parallel training wall-clock. Throughout our evalua-
tion, including the discussions above and Figure 7, we configure
Balsa to use a few query execution nodes per run (average: 2.5
nodes/run) to speed up training. For completeness, Figure 8 shows
non-parallel training times where each run uses one execution node.
In all cases, peak performance is reached within single-digit hours,
a comfortable “nightly maintenance” range. The time to match the
experts is at most 3 hours slower than that for the parallel mode.
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Figure 7: Learning efficiency of Balsa. Normalized runtime of training queries (log scale) vs. (a) elapsed time and (b) number of executed plans.
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Figure 8: Wall-clock efficiency, non-parallel training mode.
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Figure 9: Breakdown of Balsa’s per-query speedups. Speedup of
each query (log scale) vs. PostgreSQL expert runtime (log scale).

Sources of speedup. Figure 9 shows Balsa’s per-query speedups
over PostgreSQL plans. For JOB, Balsa produces better query plans
for most queries in both training and testing. Notably, Balsa consid-
erably speeds up the slowest queries. Slowdowns mostly occur in
the queries that are inherently fast to execute, and hence minimally
affect the overall runtime. A similar trend holds for TPC-H.

Summary. Balsa can bootstrap from a minimal cost model and
learn to surpass both an open-source and a commercial expert
optimizer. Balsa is efficient to train, needing a few hours to match
the experts and thousands of plans to reach its peak performance.

8.3 Analysis of Design Choices
Next, we analyze the design choices of each major component
in Balsa: (1) the initial simulator, (2) the timeout mechanism, (3)
exploration strategies, (4) the training scheme, and (5) beam search.
In summary, we found all components to positively contribute to
Balsa’s performance and generalization.

In each experiment, we change one component at a time and hold
all other configurations fixed at default values. We then measure
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Figure 10: Impact of the initial simulator. (a) Better simulators ac-
celerate learning. (b) Simulation is essential for generalization.

each variant’s performance on the JOB (random split) workload on
PostgreSQL. Default choices are highlighted in bold in each figure.

8.3.1 Impact of the initial simulator. Balsa bootstraps from a mini-
mal simulator. We can consider two alternatives that differ the most
from this choice in terms of the amount of prior knowledge:
• Expert Simulator: the cost model from an expert optimizer,
PostgreSQL, which has sophisticated modeling of all physical
operators and captures the nuances of its execution engine. (Note
that this variantmeans Balsa uses this costmodel as the simulator;
it does not represent PostgreSQL’s own plans.)
• Balsa Simulator (§3; Cout ): a minimal cost model that sums up
the estimated result sizes of all operators. It has no knowledge
about physical operators or the execution engine.
• No simulator: skip bootstrapping altogether and initialize the
agent from random weights.

Figure 10 shows the simulator’s impact. We make four observations:
First, simulators with more prior knowledge shorten the time to

reach expert performance on training queries (Figure 10a). Balsa
with an expert simulator needs only ∼0.3 hours of learning to
match the expert. Balsa’s default simple simulator takes ∼1.4 hours
to match, while agents without simulation learning take ∼3.8 hours.

Second, more prior knowledge also leads to slightly better final
performance at the end of training (Figure 10a). The gap, however,
is relatively small. Agents using a minimal simulator mostly catch
up with those using an expert simulator.

Third, it is a pleasant surprise that the agents without simulation
(“No sim”) can finish training. This is enabled by the use of timeouts
and safe exploration, which keep the bulk of the learning safe.

Fourth, simulation is essential for generalization. Agents without
simulation learning can fail at test time (note the high variance of
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Figure 11: Impact of the timeout mechanism. (a) Timeouts acceler-
ate learning and prevent spikes. (b) With the same wall-clock time,
agents with timeouts execute more plans, improving plan variety.

“No sim” in Figure 10b). The unstable performance on test queries
occurs despite good training performance, rendering this choice
impractical. The instability is caused by randomly initialized agents
overfitting the experience collected during the real execution phase,
which is limited in quantity (∼700 subplans per iteration, so it takes
at least ∼700 iterations to catch up to the 0.5M-plan simulation
dataset, assuming each iteration’s data is unique).

In summary, bootstrapping from a minimal simulator gives good
train and test time performance. Since new execution engines may
not have an expert-developed cost model, this approach has the
additional benefit of potentially generalizing to new systems and
alleviating the human development cost.

8.3.2 Impact of the timeout mechanism. We study the impact of
timeouts (§4.3), a mechanism critical for real execution learning:
• Timeout: early-terminate query plans that have been executing
for longer than the current iteration’s timeout.
• No timeout: the mechanism is turned off.
With timeouts, agents are expected to save wall-clock time on
unpromising plans and potentially learn faster.

Results are presented in Figure 11. Timeout agents reach expert
performance about 35% faster than no-timeout agents (Figure 11a).
While both choices lead to similar final performance, there is a pro-
nounced difference in the initial phase of learning. Agents without
timeouts may execute expensive query plans, leading to significant
spikes. Such regressions are unpredictable: they can happen after
the no-timeout agents reaching expert performance.

In contrast, agents achieve safe execution when timeout is en-
abled. The early-terminated plans “nudge” the agents in a different
direction to look for more promising plans. Figure 11b shows how
the saved time is more judiciously spent: with the same wall-clock
time, agents with timeouts run more plans, speeding up learning.

Overall, these results show that the timeout mechanism acceler-
ates learning and improves Balsa’s plan variety.

8.3.3 Impact of exploration. Exploration exposes RL agents to di-
verse states, boosting performance and generalization. We compare:
• Count-based exploration (§5): Balsa’s safe explorationmethod,
which chooses the best unseen plan from beam search outputs.
• ϵ-greedy beam search: at each step of the search, with a small
probability ϵ the beam is “collapsed” into one state, discarding
the rest. The search continues as usual. We chose ϵ such that
about 10% of training queries have random joins injected.
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Figure 12: Impact of exploration. Balsa’s count-based safe explo-
ration improves generalization to unseen test queries.
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Figure 13: Impact of the training scheme. (a) On-policy learning ac-
celerates training. (b) Time saved is used towards more exploration.

• No exploration: no exploration algorithms are used.
Figure 12a shows that agents with count-based safe exploration

generalize to test queries much better than the other two variants.
The better generalization is a result of the higher number of distinct
plans experienced (Figure 12b). Training performance is omitted for
space reasons, where count-based is around 8% and 14% faster than
no-exploration and ϵ-greedy beam at convergence, respectively.

Interestingly, although ϵ-greedy beam search has similar plan
diversity to count-based, it is less stable. This is because it contains
random joins, which may only lead to low-quality complete plans
even when a value network is used to guide the remaining search.

In summary, these results show that safe exploration is non-
trivial, and Balsa’s count-based method is both simple and effective.

8.3.4 Impact of the training scheme. We compare Balsa’s on-policy
learning to a full retrain scheme used by prior work, Neo [17]:
• On-policy learning (§4.1): Balsa’s training scheme which uses
the latest iteration’s data to update Vreal.
• Retrain: re-initialize Vreal and retrain on the entire experience
(Dreal) at every iteration. Last iteration’s Vreal is discarded.
On-policy learning significantly accelerates training, reaching

the expert’s performance 2.1× faster than retrain agents (Figure 13a).
Its lead is consistent throughout training. The faster learning is due
to on-policy saving time by updatingVreal on a constant-size dataset,
rather than retraining it on an increasingly larger dataset. The time
saved is used towards exploration, i.e., executing more unique plans
(Figure 13b). Better exploration thus further accelerates learning.
On-policy has slightly higher variance due to performing SGD on
much less data. However, the slowest on-policy agent (the upper
edge of the shading) is still mostly faster than retrain agents.
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Figure 14: Impact of search parameters on planning time and per-
formance on JOB test set. Means and standard deviations are shown.

8.3.5 Impact of planning time. Balsa performs beam search with
beam size b using the value network to generate k complete query
plans, and then picks the best plan to execute (during training,
the best unexplored plan is picked). Figure 14 studies Balsa’s plan-
ning time and performance of the JOB test queries using various
combinations of b and k on a trained checkpoint.

For all settings, the mean per-query planning time is below
250ms. The planner is implemented in Python and thus leaves
room for optimization. Usingb = 1 (where beam search degenerates
into greedy search) slightly hurts performance; all other settings
produce plans with similar runtime. Hence, Balsa’s performance is
insensitive to these parameters, and we can flexibly reduce planning
time for deployment by using lower values (e.g., b = 5,k = 1
speeds up planning time by 2× with no performance drop). We use
b = 20,k = 10 during training as larger values can help exploration.

8.4 Comparison with Learning from Expert
Demonstrations

We compare Balsa with Neo [17], a recently proposed learned op-
timizer that relies on PostgreSQL-generated plans—i.e., learning
from expert demonstrations. This experiment uses the same setup
as §8.3 (JOB workload on PostgreSQL). As Neo is not open source,
we implement our best-effort reproduction, denoted as “Neo-impl”.
We make both approaches use identical modeling choices (e.g.,
architecture, featurizations, beam search), and turn off Balsa’s algo-
rithmic components for Neo-impl (bootstrapping from simulation;
on-policy learning; exploration; timeout mechanism). One notable
difference is that Neo completely resets its model to randomweights
in each iteration and retrains it on the entire collected experience.

Figure 15a shows training performance. At initialization, Balsa is
5× faster than Neo-impl, since simulation learning provides a high
state coverage (Table 2) as opposed to a limited number of expert
demonstrations (one complete plan per query). Balsa remains stable
throughout training, as it employs timeouts. Neo-impl experiences
performance spikes (note the variance) as it has no mechanism to
deal with disastrous plans. These regressions are unpredictable and
can occur after hours of training. In terms of training efficiency,
Neo-impl’s retraining schememakes it progress increasingly slower
as the amount of experience accumulates. Neo-impl spent about 25
hours to finish 100 iterations, whereas Balsa only spent 2.6 hours.

Surprisingly, despite reaching a relatively stable training perfor-
mance with 5 hours of learning, Neo-impl is still not robust enough
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Figure 15: Comparison with learning from expert demonstrations.

to generalize to unseen test queries and suffers from high variance
(Figure 15b). Its median workload runtime fluctuates between 1–5×
slower than the expert and its maximum is up to 10× worse. This
failure mode may prohibit this approach from producing reliable
models for practical deployment.

In contrast, Balsa is much more robust. Balsa consistently gen-
erates faster plans than the expert for unseen queries, with a 2×
maximum speedup. Balsa’s better generalization is due to a broader
state coverage offered by simulation, on-policy learning, and safe
exploration (see Figures 12 and 13).

In sum, Balsa learns faster, achieves safe execution, generalizes
better due to simulation and better exploration, while refuting the
previously held belief that expert demonstrations are needed [17].

8.4.1 Comparison with Bao. Bao [16] is a related approach that
assumes an expert optimizer is available. Like Neo, it requires expert
demonstrations to train its model. Bao learns to provide a set of
hints (e.g., disable hash join) for each query, “steering” the expert
optimizer to produce better plans. This is different from Balsa which
learns to produce physical plans by itself. Nevertheless, we compare
the performance of the query plans generated by Balsa with those
by Bao on top of PostgreSQL.

We substantially optimize the Bao source code [1] as follows.
First, we turn on an optimization that bootstraps its model from
PostgreSQL’s expert plans, rather than from a random state. Sec-
ond, its paper specifies that it trains on the most recent k = 2000
experiences, which we found led to highly unstable performance.
We thus train Bao on all past experiences, stabilizing convergence.

Table 3: Balsa vs. Bao: speedups with respect to PostgreSQL.

JOB, train JOB, test JOB Slow, train JOB Slow, test

Balsa 2.1× 1.7× 1.3× 1.3×
Bao 1.6× 1.8× 1.2× 1.1×

Table 3 shows that Balsa generally matches or outperforms Bao.
These results are not surprising: they confirm the finding in the Bao
paper that a learned optimizer with higher degrees of freedom (action
space) can outperform Bao in plan quality on stable workloads.

8.5 Enhancing Generalization
Figure 6 already shows that Balsa can generalize to unseen test
queries quite well, outperforming experts without ever seeing the
test queries. Here, we study (i) the benefit of diversified experiences
(§6), and (ii) generalizing to entirely distinct join templates/filters.
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Figure 17: Generalizing to highly distinct join templates: test per-
formance on Ext-JOB, with JOB as the training set. On PostgreSQL.

Diversified experiences. We build diversified experiences for all
workloads/engines in Figure 6, by merging the data of each main
experiment’s eight agents. We retrain a new agent on top, referred
to as “Balsa-8x”; this process is repeated eight times to control for
training variance. (Training is efficient as no query executions are
performed.) Figure 16 shows the median performance: we observe
that Balsa-8x improves speedups on both training and test queries in
almost all cases, sometimes even by 60–80% (JOB Slow, test).

Improving training speedups is not surprising: a retrained agent
can mix-and-match the best plans found by the base agents. Impor-
tantly, test queries see large speedups too without ever being executed
(e.g., on both engines, both JOB splits now have > 2× test speedups).
This is because diversified experiences have highly diverse plans,
so more generalizable value networks can be trained on top.

Queries with entirely new join templates. We further examine
Balsa’s generalization to difficult unseen queries. First, we split JOB
using 4 slowest templates (17, 16, 6, 19) as the test set (20 queries) and
the rest as the train set. On this new split, Balsa achieves good train
and test speedups (1.4×, 1.5×), further confirming its robustness.

Second, we evaluate on Extended JOB (Ext-JOB), a hard gener-
alization workload [17]. It has 24 new queries on the same IMDb
dataset, having 2–10 joins and averaging 5 joins per query. These
queries are challenging and “out-of-distribution” since they contain
entirely different join templates and predicates from the original JOB.

Figure 17a shows the test performance of Neo-Impl and Balsa on
Ext-JOB with the entire 113 JOB queries as the training set. While
Balsa is more stable than Neo-impl, neither surpasses the expert
on the Ext-JOB test set (although they come close). This confirms
that Ext-JOB is a highly challenging generalization workload.

Merge Join Nested Loop Hash Join Bushy Left-deep

Training Progress
Figure 18: Balsa’s use of join operators (dark blue) and plan shapes
(light blue) on JOB. Dashed lines are counts from PostgreSQL plans.

Next, we compare Balsa-8x as described above, with Balsa-1x that
retrains on only one agent’s data. Surprisingly, in iteration 0, Balsa-
8x already matches the expert on the test set (Figure 17b). We then
allow these agents to learn for 50 more iterations on the training set.
Throughout the process, the agents never train on the Ext-JOB test
queries. Balsa-8x reaches significantly better test set performance
on Ext-JOB (20% faster than the expert) than Balsa-1x (which still
fails to match the expert). The gain is also consistent. These results
show that diversified experiences and further exploration are valuable
strategies to improve generalization to out-of-distribution queries.

8.6 Behaviors Learned by Balsa
To gain intuition on the behaviors learned by Balsa, we visualize
the operator and shape compositions of agent-produced plans over
the course of training. Results are shown in Figure 18.

In early stages of training, Balsa quickly learns to reduce the use
of operators and shapes that incur high runtimes in the current
environment. For example, after 25 iterations, the use of merge joins
is kept below 10%. Meanwhile, Balsa starts to prefer more efficient
choices. Nested loop joins are preferred since a large portion (85%
across iterations) are the efficient indexed variant.

Balsa’s preference is novel when compared to the expert, a dif-
ference especially pronounced in the plan shapes. This is due to
the expert optimizer being one-size-fits-all, while Balsa learns to
tailor to the given workload and hardware.

9 RELATEDWORK
Learned query optimizers. Balsa is most related to DQ [13] and
Neo [17]. DQ offers the insight that the classical components of
query optimization—cost estimation and plan enumeration—can be
cast as long-term value estimation and planning. All three work
follow this formulation by using a learned value network and plan
search. Balsa also adopts DQ’s use of batched data collection on
top of a cost model in our simulation learning. Unlike DQ, Balsa
demonstrates fine-tuning entire workloads in real execution.

Neo requires learning from expert demonstrations (PostgreSQL
plans) followed by fine-tuning. In contrast, Balsa does not learn
from an expert optimizer. Lifting this restrictive assumption opens
the possibility to automatically learn to optimize in future environ-
ments. Balsa differs in three more aspects with important conse-
quences. (i) Learning from a simulator fundamentally differs from
expert demonstrations. While the latter are inherently limited in
quantity and variety (one expert plan per query), simulation allows
us to extract a maximal amount of experience, boosting general-
ization. (ii) Balsa addresses the challenge of disastrous and slow
plans. (iii) Balsa introduces novel techniques (e.g., on-policy learn-
ing, timeout as a learning curriculum, safe exploration, diversified



experiences), all of which lead to higher efficiency, performance,
or robustness. In §8.4, we showed that Balsa outperforms the ap-
proach of learning from expert demonstrations and is more robust
on unseen queries, despite not learning from an expert optimizer.

SkinnerDB [31] is an execution algorithm that learns by trying
many left-deep join orders during a query’s execution. Both Balsa
and SkinnerDB use timeouts to mitigate bad plans but propose sub-
stantially different timeout policies. While SkinnerDB must iterate
over a set of pre-defined timeouts unrelated to prior executions,
Balsa directly uses past plans’ latencies as timeouts. Balsa also offers
more general capabilities, as it can build bushy plans and assign
physical operators, both of which are not supported in SkinnerDB.

Optimizer assistants. Many recent proposals use ML to assist or
improve existing optimizers. Since Leis et al. [14] showed that inaccu-
rate cardinality estimates are most responsible for poor plans, many
projects have used ML to improve cardinality estimation [8, 10, 12,
25, 28, 35, 37–39], thus helping today’s optimizers find better plans.
The recent work Bao [16] also assists expert optimizers by learning
what optimizer flags to set for each query. Different from this line
of work, Balsa does not assist an existing optimizer, and tackles
learning to optimize precisely assuming no expert optimizers.

Sim-to-real, timeouts, and caching are general techniques ap-
plicable to a range of systems problems. Hilprecht et al. [9] have
proposed using sim-to-real to learn high-quality data partitionings
and applying timeouts and caching to optimize training. Balsa ap-
plies these methods in learned query optimization instead and offers
the novel finding that simulation learning improves generalization.

10 LESSONS LEARNED AND DISCUSSIONS
During the development of Balsa, we have learned a few lessons.
We discuss them below.

Simulation learning boosts generalization. To our surprise,
while Balsa generalizes well to unseen queries, we find that agents
without a simulation phase—including those that learn from expert
demonstrations—become unstable on new queries (§8.3.1, §8.4). At
first glance, it might be counterintuitive why simulation improves
generalization. After all, the simulator we use is a minimal, logical-
only cost model that is agnostic to the execution environment. It
imparts inaccurate knowledge to the agent that must be corrected.

We believe the reason is the simulation enables Balsa to achieve
a high coverage of the plan space. During bootstrapping, Balsa trains
on thousands of plans per query (Table 2), much more than the
experiences collected in real execution. Then, in real execution, a
bootstrapped agent can update its belief to simultaneously correct
much of the simulated knowledge, which can improve generaliza-
tion. In contrast, agents that learn only from real executions will
only see a small set of query plans, which can lead to overfitting.

Using inaccurate cardinality estimates. In traditional optimiz-
ers, cardinality estimates are known to be highly inaccurate [14],
which can lead to poor plans. In Balsa, however, we find an effective
use of inaccurate estimates: use them in the simulator. We find that

inaccurate estimates can still provide effective simulation11. Impor-
tantly, Balsa’s performance is not overly tied to the simulator—most
learning occurs after simulation, when Balsa uses real execution to
vastly improve over the simulated knowledge (e.g., initial vs. final
performance have a 4–40× gap in Figure 7). Consistent with prior
work [14], we expect better estimates to lead to a better simulator,
which would accelerate learning (e.g., “Expert Sim” in Figure 10).

How to better leverage an expert optimizer, if available? For
learning to optimize in a new system, even if a compatible expert
optimizer (i.e., all operators of the expert are supported by the target
engine) exists, prior state-of-the-art [17] proposes bootstrapping
only from the expert optimizer’s plans. We show that this can lead
to poor generalization due to the limited amount of demonstrations
(§8.4). In contrast, Balsa can better leverage the expert by bootstrap-
ping from the expert optimizer’s cost model—a data-rich simulator
(see the “Expert Sim” Balsa variant in Figure 10). We show that boot-
strapping from a cost model significantly improves generalization
to new queries (§8.3.1), which is a novel finding of this paper.

11 CONCLUSION
To our knowledge, Balsa is the first approach to show that learning
an optimizer without expert demonstrations is both possible and
efficient. Balsa learns by iteratively planning a given set of queries,
executing them, and learning from their latencies to build better
execution plans in the future. To make learning practical, Balsa
must avoid disastrous plans that can dramatically hinder learning.
We address this key challenge with three simple techniques: boot-
strapping from a simulator, safe execution, and safe exploration.

Balsa paves the road towards automatically learning a query
optimizer tailored to a workload and a compute environment. New
data systems may have execution models [20] or objectives [19]
that go beyond our knowledge of query optimization. By learning
on its own and not learning from an expert system, Balsa may
alleviate the significant optimizer development cost for systems yet
to be developed. Balsa is a first step towards this exciting direction.
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