
Deep Unsupervised Cardinality Estimation

Zongheng Yang 1, Eric Liang 1, Amog Kamsetty 1, Chenggang Wu 1, Yan Duan 3,
Xi Chen 1,3, Pieter Abbeel 1,3, Joseph M. Hellerstein 1, Sanjay Krishnan 2, Ion Stoica 1

1UC Berkeley 2University of Chicago 3covariant.ai
1{zongheng,ericliang,amogkamsetty,cgwu,pabbeel,hellerstein,istoica}@berkeley.edu

2skr@uchicago.edu 3{rocky,peter}@covariant.ai

ABSTRACT
Cardinality estimation has long been grounded in statistical
tools for density estimation. To capture the rich multivari-
ate distributions of relational tables, we propose the use of
a new type of high-capacity statistical model: deep autore-
gressive models. However, direct application of these models
leads to a limited estimator that is prohibitively expensive
to evaluate for range or wildcard predicates. To produce a
truly usable estimator, we develop a Monte Carlo integration
scheme on top of autoregressive models that can efficiently
handle range queries with dozens of dimensions or more.

Like classical synopses, our estimator summarizes the data
without supervision. Unlike previous solutions, we approxi-
mate the joint data distribution without any independence
assumptions. Evaluated on real-world datasets and com-
pared against real systems and dominant families of tech-
niques, our estimator achieves single-digit multiplicative er-
ror at tail, an up to 90× accuracy improvement over the
second best method, and is space- and runtime-efficient.

PVLDB Reference Format:
Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu,
Yan Duan, Xi Chen, Pieter Abbeel, Joseph M. Hellerstein, San-
jay Krishnan, and Ion Stoica. Deep Unsupervised Cardinality
Estimation. PVLDB, 13(3): 279-292, 2019.
DOI: https://doi.org/10.14778/3368289.3368294

1. INTRODUCTION
Cardinality estimation is a core primitive in query opti-

mization [42]. One of its main tasks is to accurately estimate
the selectivity of a SQL predicate—the fraction of a relation
selected by the predicate—without actual execution. De-
spite its importance, there is wide agreement that the prob-
lem is still unsolved [26,28,36]. Open-source and commercial
DBMSes routinely produce up to 104−108× estimation er-
rors on queries over a large number of attributes [26].

The fundamental difficulty of selectivity estimation comes
from condensing information about data into summaries [18].
The predominant approach in database systems today is
to collect single-column summaries (e.g., histograms and

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 3
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3368289.3368294

KBs MBs Intractable

Storage

104× off

102× off

1×
Accuracy

KDE/Sampling/
Supervised

Full Joint
Naru (ours)

DBMS/
Heuristics

Figure 1: Approximating the joint data distribution in full, Naru
enjoys high estimation accuracy and space efficiency.

sketches), and to combine these coarse-grained models as-
suming column independence. This represents one end of
the spectrum, where the summaries are fast to construct
and cheap to store, but compounding errors occur due to
the coarse information and over-simplifying independence
assumptions. On the other end of the spectrum, when given
the joint data distribution of a relation (the frequency of each
unique tuple normalized by the relation’s cardinality), per-
fect selectivity “estimates” can be read off or computed via
integration over the distribution. However, the joint is in-
tractable to compute or store for all but the tiniest datasets.
Thus, traditional selectivity estimators face the hard trade-
off between the amount of information captured and the cost
to construct, store, and query the summary.

An accurate and compact joint approximation would allow
better design points in this tradeoff space (Figure 1). Recent
advances in deep unsupervised learning have offered promis-
ing tools in this regard. While it was previously thought
intractable to approximate the data distribution of a rela-
tion in its full form [7, 14], deep autoregressive models, a
type of density estimator, have succeeded in modeling high-
dimensional data such as images, text, and audio [40, 48–
50]. However, these models only estimate point densities—
in query processing terms, they only handle equality predi-
cates (e.g., “what is the fraction of tuples with price equal to
$100?”). Full-featured selectivity estimation requires han-
dling not only equality but also range predicates (e.g., “what
fraction of tuples have price less than $100 and weight greater
than 10 lbs?”). Naive estimation of the range density by
integrating over the query region requires summing up an
enormous number of points. In an 11-dimensional table we
consider, a challenging range query has 1010 points in the
query region, which would take more than 1,000 hours to
sum over by a naive enumeration scheme. A full-featured
selectivity estimator, therefore, requires new techniques be-
yond the state of the art.

1

In this paper, we show that selectivity estimation can be
performed with high accuracy by using deep autoregressive
models. We first show how relational data—including both
numeric and categorical attributes—can be mapped onto
these models for effective selectivity estimation of equality
predicates. We then introduce a new Monte Carlo integra-
tion technique called progressive sampling, which efficiently
estimates range queries even at high dimensionality. By
leveraging the availability of conditional probability distri-
butions provided by the model, progressive sampling steers
the sampler into regions of high probability density, and then
corrects for the induced bias by using importance weight-
ing. This technique extends the state of the art in density
estimation, with particular applicability to our problem of
general-purpose selectivity estimation. Our scheme is effec-
tive: a thousand samples suffice to accurately estimate the
aforementioned 1010-point query.

To realize these ideas, we design and implement Naru
(Neural Relation Understanding), a selectivity estimator that
approximates the joint data distribution in its full form,
without any column independence assumptions. Approx-
imating the joint in full not only provides superior accu-
racy, but also frees us from specifying what combinations of
columns to build synopses on. We further propose optimiza-
tions to efficiently handle wildcard predicates, and to encode
and decode real-world relational data (e.g., supporting var-
ious datatypes, small and large domain sizes). Combining
our integration scheme with these practical strategies re-
sults in a highly accurate, compact, and functionality-rich
selectivity estimator based on deep autoregressive models.

Just like classical synopses, Naru summarizes a relation
in an unsupervised fashion. The model is trained via sta-
tistically grounded principles (maximum likelihood) where
no supervised signals or query feedback are required. While
query-driven estimators are optimized with respect to a set
of training queries (i.e., “how much error does the estima-
tor incur on these queries?”), Naru is optimized with respect
to the underlying data distribution (i.e., “how divergent is
the estimator from the data?”). Being data-driven, Naru
supports a much larger set of queries and is automatically
robust to query distributional shifts. Our evaluation com-
pares Naru to the state-of-the-art unsupervised and super-
vised techniques, showing Naru to be the only estimator to
achieve worst-case single-digit multiplicative errors for chal-
lenging high-dimensional queries.

In summary, we make the following contributions:

1. We show deep autoregressive models can be used for
selectivity estimation (§2, §3), and propose optimiza-
tions to make them suitable for relational data (§4).

2. To handle challenging range queries, we develop pro-
gressive sampling, a Monte Carlo integration algorithm
that efficiently estimates range densities even with large
query regions (§5.1). We augment it with a novel opti-
mization, wildcard-skipping (§5.2), to handle wildcard
predicates. We also propose information-theoretic col-
umn orderings (§5.3) to reduce estimation variance.

3. We extensively evaluate on real datasets against 8 base-
lines across 5 different families (heuristics, real DBM-
Ses, sampling, statistical methods, deep supervised re-
gression). Our estimator Naru achieves up to orders-
of-magnitude better accuracy with space usage ∼1%
of data size and ∼5−10ms of estimation latency (§6).

2. PROBLEM FORMULATION
Consider a relation T with attribute domains {A1, . . . , An}.

Selectivity estimation seeks to estimate the fraction of tu-
ples in T that satisfy a particular predicate, θ : A1 × · · · ×
An → {0, 1}. We define the selectivity to be sel(θ) :=
|{x ∈ T : θ(x) = 1}|/|T |.

The joint data distribution of the relation, defined to be

P (a1, . . . , an) := f(a1, . . . , an)/|T |

is closely related to the selectivity, where f(a1, . . . , an) is the
number of occurrences of tuple (a1, . . . , an) in T . It forms
a valid probability distribution since integrating it over the
attribute domains yields a value of 1. Thus, exact selectivity
calculation is equivalent to integration over the joint:

sel(θ) =
∑

a1∈A1

· · ·
∑

an∈An

θ(a1, . . . , an) · P (a1, . . . , an).

In this work, we consider finite relation T and hence its
empirical domains Ai are finite. Therefore summation is
used in the integration calculation above.

2.1 Approximating the Joint via Factorization
Given the joint, exact selectivity “estimates” can be cal-

culated by integration. However, the number of entries in
the joint—and thus the maximum number of points needed
to be summed over in the integration—is |P | =

∏n
i=1 |Ai|,

a size that grows exponentially in the number of attributes.
Real-world tables with a dozen or so columns can easily have
a theoretic joint size of 1020 and upwards (§6). In practice,
it is possible to bound this number by |T |, the number of
tuples in the relation, by not storing any entry with zero
occurrence. Algorithmically, to scale construction, storage,
and integration to high-dimensional tables, joint approxi-
mation techniques seek to factorize [15] the joint into some

lower-dimensional representation, P̂ ≈ P .
Classical 1D histograms [42] use the simplest factoriza-

tion, P̂ (A1, · · · , An) ≈
∏n

i=1 P̂ (Ai), where independence be-

tween attributes is assumed. The P̂ (Ai)’s are materialized
as histograms that are cheap to construct and store. Selec-
tivity estimation reduces to calculating per-column selectiv-
ities and combining by multiplication,

sel(θ) ≈

(∑
a1∈A1

θ1(a1)P̂ (a1)

)
×· · ·×

(∑
an∈An

θn(an)P̂ (an)

)

where each θi is predicate θ projected to each attribute (as-
suming here θ is a conjunction of single-attribute filters).

Richer factorizations are possible and are generally more
accurate. For instance, Probabilistic Relational Models [13,
14] from the early 2000s leverage the conditional indepen-
dence assumptions of Bayesian Networks (e.g., joint factored

into smaller distributions, {P̂ (A1|A2, A3), P̂ (A2), P̂ (A3)}).
Dependency-Based Histograms [7] use decomposable inter-
action models and rely on partial independence between

columns (e.g., P̂ (A1, A2, A3) ≈ P̂ (A1)P̂ (A2, A3)). Both
methods are marked improvements over 1D histograms since
they capture more than single-column interactions. How-
ever, the tradeoff between richer factorizations and costs to
store or integrate is still unresolved. Obtaining selectivi-
ties becomes drastically harder due to the integration now
crossing multiple attribute domains. Most importantly, the

2

approximated joint’s precision is compromised since some
forms of independence are still assumed.

In this paper, we consider the richest possible factorization
of the joint, using the product rule:

P̂ (A1, · · · , An) = P̂ (A1)P̂ (A2|A1) · · · P̂ (An|A1, . . . , An−1)

Unlike the previous proposals, the product rule factorization
is an exact relationship to represent a distribution. It makes
no independence assumptions and captures all complex in-
teractions between attributes. Key to this goal is that the

factors, {P̂ (Ai|A1, . . . , Ai−1)}, need not be materialized; in-
stead, they are calculated on-demand by a neural network,
a high-capacity universal function approximator [11].

2.2 Problem Statement
We estimate the selectivities of queries of the following

form. A query is a conjunction of single-column boolean
predicates, over arbitrary subsets of columns. A predicate
contains an attribute, an operator, and a literal, and is read
as Ai ∈ Ri (attribute i takes on values in valid region Ri).
Our formulation includes the usual =, 6=, <,≤, >,≥ predi-
cates, the rectangular containment Ai ∈ [li, ri], or even IN
clauses. For ease of exposition, we use range to denote the
valid region Ri or, for the whole query, the composite valid
region R1×· · ·×Rn. We assume the domain of each column,
Ai, is finite: since a real dataset is finite, we can take the
empirically present values of a column as its finite domain.

We make a few remarks. First, disjunctions of such pred-
icates are supported via the inclusion-exclusion principle.
Second, our formulation follows a large amount of existing
work on this topic [7,14,17,35,38] and, in some cases, offers
more capabilities. Certain prior work requires each predi-
cate be a rectangle [17,22] or columns be real-valued [17,24];
our “region” formulation supports complex predicates and
does not make these assumptions. Lastly, the relation under
estimation can either be a base table or a join result.

3. DEEP AUTOREGRESSIVE MODELS

3.1 Overview
Naru uses a deep autoregressive model to approximate the

joint distribution. We overview the statistical features they
offer and how those relate to selectivity estimation.

Access to point density P̂ (x). Deep autoregressive mod-

els produce point density estimates P̂ (x) after training on a
set of n-dimensional tuples T = {x1, . . . } with the unsuper-
vised maximum likelihood objective. Many network archi-
tectures have been proposed in recent years, such as masked
multi-layer perceptrons (e.g., MADE [12], ResMADE [9]) or
masked self-attention networks (e.g., Transformer [50]).

Access to conditional densities {P̂ (xi|x<i)}. Addition-
ally, autoregressive models also provide access to all condi-
tional densities present in the product rule:

P̂ (x) = P̂ (x1, x2, · · · , xn)

= P̂ (x1)P̂ (x2|x1) · · · P̂ (xn|x1, . . . , xn−1)

Namely, given input tuple x = (x1, · · · , xn), one can ob-
tain from the model the n conditional density estimates,

Table

Tuples

Autoregressive
Model

Data
Source

unsupervised loss
(maximum likelihood)

Selectivity
estimates

x1
x2
x3

P̂(x1)

P̂(x2|x1)
P̂(x3|x1, x2)

Figure 2: Overview of the estimator framework. Naru is trained
by reading data tuples and does not require supervised training
queries or query feedback, just like classical synopses.

{P̂ (xi|x<i)}. The model can be architected to use any or-
dering(s) of the attributes (e.g., (x1, x2, x3) or (x2, x1, x3)).
In our exposition we assume the left-to-right schema order
(§5.3 discusses heuristically picking a good ordering).

Naru chooses autoregressive models for selectivity estima-
tion for two important reasons. First, autoregressive mod-
els have shown superior modeling precision in learning im-
ages [40,49], audio [48], and text [50]. All these domains in-
volve correlated, high-dimensional data akin to a relational
table. Second, as we will show in §5.1, access to conditional
densities is critical in efficiently supporting range queries.

3.2 Autoregressive Models for Relational Data
Naru allows any autoregressive modelM to be plugged in.

In general, such model has the following functional form:

M(x) 7→
[
P̂ (X1), P̂ (X2|x1), · · · , P̂ (Xn|x1, . . . , xn−1)

]
(1)

Namely, one tuple goes in, a list of conditional density dis-
tributions comes out, each being a distribution of the ith
attribute conditioned on previous attributes. (The scalars

required to compute the point density, {P̂ (xi|x<i)}, are read
from these conditional distributions.) How can a neural net

M attain the autoregressive property, e.g., that P̂ (X3|x1, x2)
only depends on, or “sees”, the information from the first
two attribute values (x1, x2) but not anything else?

Information masking is a common technique used to im-
plement autoregressive models [12,49,50]; here we illustrate
the idea by constructing an example architecture for rela-
tional data. Suppose we assign each column i its own com-
pact neural net, whose input is the aggregated information
about previous column values x<i. Its role is to use this con-
text information to output a distribution over its own do-

main, P̂ (Xi|x<i). Consider a travel checkins table with
columns city, year, stars. Assume the model is given the
input tuple, 〈Portland, 2017, 10〉. First, column-specific en-
coders Ecol() transform each attribute value into a numeric
vector suitable for neural net consumption, [Ecity(Portland),
Eyear(2017), Estars(10)]. Then, appropriately aggregated in-
puts are fed to the per-column neural nets Mcol:

0→Mcity

Ecity(Portland)→Myear

⊕ (Ecity(Portland), Eyear(2017))→Mstars

where ⊕ is the operator that aggregates information from
several encoded attributes. In practice, this aggregator can
be vector concatenation, a set-invariant pooling operator
(e.g., elementwise sum or max), or even self-attention [50].

3

Notice that the first output, fromMcity, does not depend
on any attribute values (its input 0 is arbitrarily chosen).
The second output depends only on the attribute value from
city, and the third depends only on both city and year.
Therefore, the three outputs can be interpreted as[

P̂ (city), P̂ (year|city), P̂ (stars|city, year)
]

Thus, autoregressiveness is achieved via such input masking.
Training these model outputs to be as close as possible

to the true conditional densities is done via maximum likeli-
hood estimation. Specifically, the cross entropy [11] between

the data distribution P and the model estimate P̂ is calcu-
lated over all tuples in relation T and used as the loss:

H(P, P̂) = −
∑
x∈T

P (x) log P̂ (x) = − 1

|T |
∑
x∈T

log P̂ (x) (2)

It can be fed into a standard gradient descent optimizer [20].

Lastly, the Kullback-Leibler divergence, H(P, P̂)−H(P), is
the entropy gap (in bits-per-tuple) incurred by the model. A
lower gap indicates a higher-quality density estimator; thus,
it serves as a monitoring metric during and after training.

4. ESTIMATOR CONSTRUCTION
We now discuss practical issues in constructing Naru.

4.1 Workflow
Figure 2 outlines the workflow of building a Naru estima-

tor. After specifying a table T to build an estimator on,
batches of random tuples from T are read to train Naru. In
practice, a snapshot of the table can be saved to external
storage so normal DBMS activities are not affected. Neural
network training can be performed either close to the data
(at periods of low activity) or offloaded to a remote process.

For a batch of tuples, Naru encodes each attribute value
using column-specific strategies (§4.2). The encoded batch
then gets fed into the model to perform a gradient update
step. Our evaluation (§6.4) empirically observed that one
pass over data is sufficient to achieve a high degree of ac-
curacy (e.g., outperforming real DBMSes by 10−20×), and
more passes are beneficial until model convergence.

Appends and updates may cause statistical staleness. Naru
can be fine-tuned on the updated relation to correct for this,
as we show in §6.8.3. Further, if new data comes in per-day
partitions, then each partition can train its own Naru model.
Efficient incremental model update is an important topic
worthy of detailed study, which we defer to future work.

Joins. The estimator does not distinguish between the type
of table it is built on. To build an estimator on a joined re-
lation, either the entire joined relation can be pre-computed
and materialized, or multi-way join operators [51, 52] and
samplers [2, 27] can be used to produce batches of tuples
on-the-fly. Given access to tuples from the joined result,
no changes are needed to the estimator framework. Once
trained, the estimator supports queries that filter any col-
umn in the joined relation. This treatment follows prior
work [19,31,35] and is conceptually clean.

4.2 Encoding and Decoding Strategies
Naru models a relation as a high-dimensional discrete dis-

tribution. The key challenge is to encode each column into

a form suitable for neural network consumption, while pre-
serving the column semantics. Further, each column’s out-

put distribution P̂ (Xi|x<i) (a vector of scores) must be ef-
ficiently decoded regardless of its datatype or domain size.

For each column Naru first obtains its domain Ai either
from user annotation or by scanning. All values in the col-
umn are then dictionary-encoded into integer IDs in range
[0, |Ai|). For instance, the dictionary can be Portland 7→ 0,
SF 7→ 1, etc. For a column with a natural order, e.g., nu-
merics or strings, the domain is sorted so that the dictionary
order follows the column order. Overall, this pre-processing
step is a lossless transformation (i.e., a bijection).

Next, column-specific encoders Ecol() encode these IDs
into vectors. The ML community has proposed many such
strategies before; we make sensible choices by keeping in
mind a few characteristics specific to relational datasets:

Encoding small-domain columns: one-hot. For such a
column Ecol() is set to one-hot encoding (i.e., indicator vari-
ables). For instance, if there are a total of 4 cities, then the
encoding of SF is Ecity(1) = [0, 1, 0, 0], a 4-dimensional vec-
tor. The small-domain threshold is configurable and set to
64 by default. This encoding takes O(|Ai|) space per value.

Encoding large-domain columns: embedding. For a
larger domain, the one-hot vector wastes space and compu-
tation budget. Naru uses embedding encoding in this case.
In this scheme—a preprocessing step in virtually all natural
language processing tasks—a learnable embedding matrix
of type R|Ai|×h is randomly initialized, and Ecol() is sim-
ply row lookup into this matrix. For instance, Eyear(4) 7→
row 4 of embedding matrix, an h-dimensional vector. The
embedding matrix gets updated during gradient descent as
part of the model weights. Per value this takes O(h) space
(Naru defaults h to 64). This encoding is ideal for domains
with a meaningful semantic distance (e.g., cities are similar
in geo-location, popularity, relation to its nation) since each
dimension in the embedding vector can learn to represent
each such similarity.

Decoding small-domain columns. Suppose domain Ai

is small. In this easy case, the network allocates an out-

put layer to compute a distribution P̂ (Xi|x<i), which is
a |Ai|-dimensional vector of probabilities used for selectiv-
ity estimation. We use a fully connected layer, FC(F, |Ai|),
where F is the hidden unit size. For example, for a city col-
umn with three values in its domain, the output distribution
may be [SF = 0.2;Portland = 0.5;Waikiki = 0.3]. During op-
timization, the training loss seeks to minimize the divergence
of this output from the data distribution.

Decoding large-domain columns: embedding reuse.
If the domain is large, however, using a fully connected out-
put layer FC(F, |Ai|) would be inefficient in both space and
compute. Indeed, an id column in a dataset we tested on
has a large domain size of |Ai| = 104, inflating the output
layer beyond typical scales.

Naru solves this problem by an optimization that we call
“embedding reuse”. In essence, we replace the potentially
large output layer FC(F, |Ai|) with a much smaller version,
FC(F, h) (recall that h is the typically small embedding di-
mensions; defaults to 64). This immediately yields a saving
ratio of |Ai|/h. The goal of decoding is to take in inputs

4

x<i and output |Ai| probability scores over the domain.
With the shrunk-down output layer, inputs x<i would pass
through the net arriving at an h-dimensional feature vector,
H ⊆ R1×h. We then calculate HET

i , where Ei ⊆ R|Ai|×h is
the already-allocated embedding matrix for column i, obtain-
ing a vector R1×|Ai| that can be interpreted as the desired
scores after normalization. We have thus decoded the output
while cutting down the cost of compute and storage. This
scheme has proved effective in other large-domain tasks [39].

4.3 Model Choice
As discussed, any autoregressive model can be plugged

in, taking advantage of Naru’s encoding/decoding optimiza-
tions as well as querying capabilities (§5). We experiment
with three representative architectures: (A) Masked Au-
toencoder (MADE) [12], a standard multi-layer perceptron
with information masking to ensure autoregressiveness; (B)
ResMADE [9], a simple extension to MADE where residual
connections are introduced to improve learning efficiency;
and (C) Transformer [50], a class of self-attentional models
driving recent state-of-the-art advances in natural language
processing [8, 54]. Table 7 compares the tradeoffs of these
building blocks. We found that, under similar parameter
count, more advanced architectures (B, C) achieve better
entropy gaps; however, the smaller entropy gaps do not au-
tomatically translate into better selectivity estimates and
the computational cost can be significantly higher (for C).

5. QUERYING THE ESTIMATOR
Once an autoregressive model is trained, it can be queried

to compute selectivity estimates. Assume a query sel(θ) =
P (X1 ∈ R1, . . . , Xn ∈ Rn) asking for the selectivity of the
conjunction, where each range Ri can be a point (equality
predicate), an interval (range predicate), or any subset of
the domain (IN). The calculation of this density is funda-
mentally summing up the probability masses distributed in
the cross-product region, R = R1 × · · · ×Rn.

We first discuss the straightforward support for equality
predicates, then move on to how Naru solves the more chal-
lenging problem of range predicates.

Equality Predicates. When values are specified for all
columns, estimating conjunctions of these equality predi-
cates is straightforward. Such a point query has the form
P (X1 = x1, . . . , Xn = xn) and requires only a single forward
pass on the point, (x1, . . . , xn), to obtain the sequence of

conditionals, [P̂ (X1 = x1), P̂ (X2 = x2|X1 = x1), . . . , P̂ (Xn =
xn|X1 = x1, . . . , Xn−1 = xn−1)], which are then multiplied.

Range Predicates. It is impractical to assume a workload
that only issues point queries. With the presence of any
range predicate, or when some columns are not filtered, the
number of points that must be evaluated through the model
becomes larger than 1. (In fact, it easily grows to an as-
tronomically large number for the majority of workloads we
considered.) We discuss two ways in which Naru carries out
this operation. Enumeration exactly sums up the densities
when the queried region R is sufficiently small:

sel(X1 ∈ R1, . . . , Xn ∈ Rn) ≈
∑

x1∈R1

· · ·
∑

xn∈Rn

P̂ (x1, . . . , xn).

A1 A2 AN-1 AN

do
m

ai
n

...

query
region

do
m

ai
n

...

query
region

Uniform Sampling Progressive Sampling
A1 A2 AN-1 AN

Figure 3: The intuition of progressive sampling. Uniform sam-
ples taken from the query region have a low probability of hitting
the high-mass sub-region of the query region, increasing the vari-
ance of Monte Carlo estimates. Progressive sampling avoids this
by sampling from the estimated data distribution instead, which
naturally concentrates samples in the high-mass sub-region.

When the region R is deemed too big—almost always the
case in the datasets and workloads we considered—we in-
stead use a novel approximate technique termed progressive
sampling (described next), an unbiased estimator that works
surprisingly well on the relational datasets we considered.

Lastly, queries with out-of-domain literals can be handled
via simple rewrite. For example, suppose year’s domain is
{2017, 2019}. A range query with an out-of-domain literal,
say “year < 2018”, can be rewritten as “year ≤ 2017” with
equivalent semantics. For equality predicates with out-of-
domain literals, Naru simply returns a cardinality of 0. Here-
after we consider in-domain literals and valid regions.

5.1 Range Queries via Progressive Sampling
The queried region R = R1 × · · · × Rn in the worst case

contains O(
∏

i
Di) points, where Di = |Ai| is the size of each

attribute domain. Clearly, computing the likelihood for an
exponential number of points is prohibitively expensive for
data/queries with even moderate dimensions. Naru proposes
an approximate integration scheme to address this challenge.

First attempt (Figure 3, left). The simplest way to ap-
proximate the sum is via uniform sampling. First, sample
x(i) uniformly at random from R. Then, query the model to

compute p̂i = P̂ (x(i)). By naive Monte Carlo, for S samples

we have |R|
S

∑S
i=1 p̂i as an unbiased estimator to the desired

density. Intuitively, this scheme is randomly throwing points
into target region R to probe its average density.

To understand the failure mode of uniform sampling, con-
sider a relation T with n correlated columns, with each
column distribution skewed so that 99% of the probabil-
ity mass is contained in the top 1% of its domain (Fig-
ure 3). Take a query with range predicates selecting the
top 50% of each domain. It is easy to see that uniformly
sampling from the query region will take in expectation
1/(0.01/0.5)n = 1/0.02n samples to hit the high-mass re-
gion we are integrating over. Thus, the number of samples
needed for an accurate estimate increases exponentially in
n. Consequently, we find that this sampler collapses catas-
trophically in the real-world datasets that we consider. It
has the worst errors among all baselines in our evaluation.

Progressive sampling (Figure 3, right). Instead of uni-
formly throwing points into the region, we could be more
selective in the points we choose—precisely leveraging the
power of the trained autoregressive model. Intuitively, a

sample of the first dimension x
(i)
1 would allow us to “zoom

in” into the more meaningful region of the second dimension.

5

Algorithm 1 Progressive Sampling: estimate the density
of query region R1 × · · · ×Rn using S samples.

1: function ProgressiveSampling(S;R1, . . . , Rn)

2: P̂ = 0
3: for i = 1 to S do . Batched in practice

4: P̂ = P̂ + Draw(R1, . . . , Rn)

5: return P̂ /S

6: function Draw(R1, . . . , Rn) . Draw one tuple
7: p̂ = 1
8: s = 0n . The tuple to fill in
9: for i = 1 to n do

10: Forward pass through model: M(s)

11: P̂ (Xi|s<i) = the i-th model output . Eq. 1
12: Zero-out probabilities in slots [0, Di) \Ri

13: Re-normalize, obtaining P̂ (Xi|Xi ∈ Ri, s<i)

14: p̂ = p̂× P̂ (Xi ∈ Ri|s<i)

15: Sample si∼P̂ (Xi|Xi ∈ Ri, s<i)
16: s[i] = si

17: return p̂ . Density of the sampled tuple s

This more meaningful region is exactly described by the
second conditional output from the autoregressive model,

P̂ (X2|x(i)1), a distribution over the second domain given
the first dimension sample. We can obtain a sample of

the second dimension, x
(i)
2 , from this space instead of from

Unif(R2). This sampling process continues for all columns.
To summarize, progressive sampling consults the autoregres-
sive model to steer the sampler into the high-mass part of
the query region, and finally compensating for the induced
bias with importance weighting.

Example. We show the sampling procedure for a 3-filter
query. Drawing the i-th sample for query P (X1 ∈ R1, X2 ∈
R2, X3 ∈ R3):

1. Forward 0 to get P̂ (X1). Compute and store P̂ (X1 ∈
R1) by summing. Then draw x

(i)
1 ∼P̂ (X1|X1 ∈ R1).

2. Forward x
(i)
1 to get P̂ (X2|x(i)1). Compute and store

P̂ (X2 ∈ R2|x(i)1). Draw x
(i)
2 ∼P̂ (X2|X2 ∈ R2, x

(i)
1).

3. Forward (x
(i)
1 , x

(i)
2) to get P̂ (X3|x(i)1 , x

(i)
2). Compute

and store P̂ (X3 ∈ R3|x(i)1 , x
(i)
2).

The summation and sampling steps are fast since they are
only over single-column distributions. This is in contrast to
integrating or summing over all columns at once, which has
an exponential number of points. The product of the three
stored intermediates,

P̂ (X1 ∈ R1) · P̂ (X2 ∈ R2|x(i)1) · P̂ (X3 ∈ R3|x(i)1 , x
(i)
2) (3)

is an unbiased estimate for the desired density. By construc-

tion, the sampled point satisfies the query (x
(i)
1 is drawn

from range R1, x
(i)
2 from R2, and so forth). It remains to

show that this sampler is approximating the correct sum:

Theorem 1. Progressive Sampling estimates are unbiased.

The proof only uses basic probability rules and is deferred
to our online technical report. Algorithm 1 shows the pseu-
docode for the general n-filter case. For a column that does

not have an explicit filter, it can in theory be treated as hav-
ing a wildcard filter, i.e., Ri = [0, Di). We describe our more
efficient treatment, wildcard-skipping, in §5.2. Our evalua-
tion shows that the sampler can cover both low and high
density regions, and handles challenging range queries for
large numbers of columns and joint spaces.

Progressive sampling bears connections to sampling al-
gorithms in graphical models. Notice that the autoregres-
sive factorization corresponds to a complex graphical model
where each node i has all nodes with indices < i as its par-
ents. In this interpretation, progressive sampling extends
the forward sampling with likelihood weighting algorithm [23]
to allow variables taking on ranges of values (the former, in
its default form, allows equality predicates only).

5.2 Reducing Variance: Wildcard-Skipping
Naru introduces wildcard-skipping, a simple optimization

to efficiently handle wildcard predicates. Instead of sam-
pling through the full domain of each wildcard column in
a query, Xi ∈ ∗, we could restrict it to a special token,
Xi = MASKi. Intuitively, MASKi signifies column i’s ab-
sence and essentially marginalizes it. In our experiments,
wildcard-skipping can reduce the variance of worst-case er-
rors by several orders of magnitude (§6.6).

During training, we perturb each tuple so that the training
data contains MASK tokens. We uniformly sample a subset
of columns to mask out—their original values in the tuple are
discarded and replaced with corresponding MASKcol. For an
n-column tuple, each column has a probability of w/n to be
masked out, where w∼Unif[0, n). The output target for the
cross-entropy loss still uses the original values.

5.3 Reducing Variance: Column Ordering
Naru models adopt a single ordering of columns during

construction (§4). However, different orderings may have
different sampling efficiency. For instance, having city as
the first column and setting it to Waikiki focuses on records
only relevant to that city, a data region supposedly much
narrower than that from having year as the first column.

Empirically, we find that these heuristic orders work well:

1. MutInfo: successively pick column Xi that maximizes
the mutual information [6] between all columns chosen
so far and itself, arg maxi I(Xchosen;Xi).

2. PMutInfo: a variant of the above that maximizes the
pairwise mutual information, arg maxi I(Xlast;Xi).

Intuitively, maximizing I(Xchosen;Xi) corresponds to find-
ing the next column with the most information already con-
tained in the chosen columns. For both schemes, we find
that picking the column with the maximum marginal en-
tropy, arg maxiH(Xi), as the first works well. Interestingly,
on our datasets, the Natural ordering (left-to-right order in
table schema) is also effective. We hypothesize this is due
to human bias in placing important or “key”-like columns
earlier that highly reduce the uncertainty of other columns.

Lastly, we note that order-agnostic training has been pro-
posed in the ML literature [12,47,54]. The idea is to train the
same model on more than one order, and at inference time
invoke a (presumably seen) order most suitable for the query.
This is a possible future optimization for Naru, though in the
preliminary experiments we did not find the performance
benefits on top of our optimizations significant.

6

6. EVALUATION
We answer the following questions in our evaluation:

1. How does Naru compare to state-of-the-art selectivity
estimators in accuracy (§6.2)? Is it robust (§6.3)?

2. How long does it take to train a Naru model to achieve
a useful level of accuracy (§6.4)?

3. Naru requires multiple inference passes to produce a
selectivity estimate. How does this compare with the
latency of other approaches (§6.5)?

4. How do wildcard-skipping and column orderings af-
fect accuracy and variance (§6.6)? How does accuracy
change with model choices and sizes (§6.7)?

Lastly, a series of microbenchmarks are run to understand
Naru’s limits (§6.8).

6.1 Experimental Setup
We compare Naru against predominant families of selec-

tivity estimation techniques, including estimators in real
databases, heuristics, non-parametric density estimators, and
supervised learning approaches (Table 2). To ensure a fair
comparison between estimators, we restrict each estimator
to a fixed storage budget (Table 1). For example, for the
Conviva-A dataset, Naru’s model must be less than 3MB in
size, and the same restriction is held for all estimators for
that dataset when applicable.

6.1.1 Datasets
We use real-world datasets with challenging characteris-

tics (Table 1). The number of rows ranges from 10K to
11.6M, the number of columns ranges from 11 to 100, and
the size of the joint space ranges from 1015 to 10190:

DMV [44]. Real-world dataset consisting of vehicle reg-
istration information in New York. We use the following
11 columns with widely differing data types and domain
sizes (the numbers in parentheses): record type (4), reg class
(75), state (89), county (63), body type (59), fuel type (9),
valid date (2101), color (225), sco ind (2), sus ind (2), rev ind
(2). Our snapshot contains 11,591,877 tuples. The exact
joint distribution has a size of 3.4× 1015.

Conviva-A. Enterprise dataset containing anonymized user
activity logs from a video analytics company. The table cor-
responds to 3 days of activities. The 15 columns contain
a mix of small-domain categoricals (e.g., error flags, con-
nection types) as well as large-domain numerical quantities
(e.g., various bandwidth numbers in kbps). Although the
domains have a range (2–1.9K) similar to DMV, there are
many more numerical columns with larger domains, result-
ing in a much larger joint distribution (1023).

Conviva-B. A small dataset of 10K rows and 100 columns
also from Conviva, with a joint space of over 10190. Though
this dataset is trivial in size, this enables the use of an em-
ulated, perfect-accuracy model for running detailed robust-
ness studies (§6.8).

6.1.2 Estimators
We next discuss the baselines listed in Table 2.
Real databases. Postgres and DBMS-1 represent the

performance a practitioner can hope to obtain from a real
DBMS. Both rely on classical assumptions and 1D histograms,

Table 1: List of datasets used in evaluation. “Dom.” refers to
per-column domain size. “Joint” is number of entries in the ex-
act joint distribution (equal to the product of all domain sizes).
“Budget” is the storage budget we allocated to all evaluated es-
timators, when applicable, relative to the in-memory size of the
corresponding original tables.

Dataset Rows Cols Dom. Joint Budget

DMV 11.6M 11 2–2K 1015 1.3% (13MB)

Conviva-A 4.1M 15 2–1.9K 1023 0.7% (3MB)

Conviva-B 10K 100 2–10K 10190 N/A

Table 2: List of estimators used in evaluation.

Type Estimator Description

Heuristic Indep A baseline that multiplies perfect
per-column selectivities.

Real System Postgres 1D stats and histograms via inde-
pendence/uniformity assumptions.

Real System DBMS-1 Commercial DBMS: 1D stats plus
inter-column unique value counts.

Sampling Sample Keeps p% of all tuples in memory.
Estimates a new query by evaluat-
ing on those samples.

MHIST MHIST The MaxDiff(V,A) histogram [37].

Graphical BayesNet Bayes net (Chow-Liu tree [4]).

KDE KDE Kernel density estimation [17,19].

Supervised MSCN Supervised deep regression net [22].

Deep AR Naru (Ours) Deep autoregressive models.

while the latter additionally contains cross-column correla-
tion statistics. Every column has a histogram and associ-
ated statistics built. Postgres is tuned to use a maximum
amount of per-column bins (10,000). For DBMS-1, one in-
vocation of stats creation with all columns specified only
builds a histogram on the first column; we therefore invoke
stats creation several times so that all columns are covered.

Independence assumption. Indep scans each column
to obtain perfect per-column selectivities and combines them
by multiplication. This measures the inaccuracy solely at-
tributed to the independence assumption.

Multi-dimensional histogram. We compare to MHIST,
an N-dimensional histogram. We use MaxDiff as our parti-
tion constraint, Value (V) as the sort parameter, and Area
(A) as the source parameter [37]. We use the MHIST-2
algorithm [38] and the uniform spread assumption [37] to
approximate the value set within each partition. Accord-
ing to [38], the resulting MaxDiff(V,A) histogram offers the
most accurate and robust performance compared to other
state-of-the-art histogram variants.

Bayesian Network. We use a Chow-Liu tree [4] as the
Bayesian Network, since empirically it gave the best results
for the allowed space. Since the size of conditional probabil-
ity tables scales with the cube of column cardinalities, we use
equal-frequency discretization (to 100 bins per column) to
bound the space consumption and inference cost. Lastly, we
apply the same progressive sampler to allow this estimator
to support range queries (it does not support range queries
out of the box); this ensures a fair comparison between the
use of deep autoregressive models and this approach.

Kernel density estimators & Sampling. In the non-
parametric sampling regime, we evaluate a uniform sam-
pler and a state-of-the-art KDE-based selectivity estima-

7

10−3 10−2 10−1 100

Query Selectivity [log scale]

0.0
0.2
0.4
0.6
0.8
1.0

F
ra

ct
io

n

DMV

Conviva-A

Figure 4: Distribution of query selectivity (§6.1.3).

tor [17, 19]. Sample keeps a set of p% of tuples uniformly
at random from the original table. In accordance with our
memory budget for each dataset, p is set to 1.3% for DMV
and 0.7% for Conviva-A. KDE [17] attempts to learn the
underlying data distribution by averaging Gaussian kernels
centered around random sample points. The number of sam-
ple points is chosen in accordance with our memory budget:
150K samples for DMV and 28K samples for Conviva-A. The
bandwidth for KDE is computed via Scott’s rule [41]. The
bandwidth for KDE-superv is initialized in the same way,
but is further optimized through query feedback from 10K
training queries. We modify the source code released by the
authors [30] in order to run it with more than ten columns.

Supervised learning. We compare to a recently pro-
posed supervised deep net-based estimator termed multi-set
convolutional network [22], or MSCN. We apply the source
code from the authors [21] to our datasets. As it is a su-
pervised method, we generate 100K training queries from
the same distribution the test queries are drawn, ensuring
their “representativeness”. The net stores a materialized
sample of the data. Every query is run on the sample to
get a bitmap of qualifying tuples—this is used as an input
additional to query features. We try three variants of the
model, all with the same hyperparameters and all trained to
convergence: MSCN-base uses the same setup reported origi-
nally [22] (1K samples, 100K training queries) and consumes
3MB. We found that MSCN’s performance is highly depen-
dent on the samples, so we include a variant with 10× more
samples (MSCN-10K: 10K samples, 100K train queries), con-
suming 13MB (satisfying DMV’s budget only). We also run
MSCN-0 that stores no samples and uses query features only.

Deep unsupervised learning (ours). We train one
Naru model for each dataset. All models are trained with the
unsupervised maximum likelihood objective. Unless stated
otherwise, we employ wildcard-skipping and the natural col-
umn ordering. Sizes are reported without any compression
of network weights:

• DMV: masked autoencoder (MADE), 5 hidden layers
(512, 256, 512, 128, 1024 units), consuming 12.7MB.

• Conviva-A: MADE, 4 hidden layers with 128 units each,
consuming 2.5MB. The embedding reuse optimization
with h = 64 is used (§4.2).

For timing experiments, we train and run the learning meth-
ods (KDE, MSCN, Naru) on a V100 GPU. Other estimators
are run on an 8-core node and vectorized when applicable.

6.1.3 Workloads
Query distribution (Figure 4). We generate multidimen-
sional queries containing both range and equality predicates.
The goal is to test each estimator on a wide spectrum of tar-
get selectivities: we group them as high (>2%), medium

(0.5%–2%), and low (≤ 0.5%). Intuitively, all solutions
should perform reasonably well for high-selectivity queries,
because dense regions require only coarse-grained modeling
capacity. As the query selectivity drops, the estimation task
becomes harder, since low-density regions require each esti-
mator to model details in each hypercube. True selectivities
are obtained by executing the queries on Postgres.

The query generator is inspired by prior work [22]. In-
stead of designating a few fixed columns to filter on, we
consider the more challenging scenario where filters are ran-
domly placed. First, we draw the number of (non-wildcard)
filters 5 ≤ f ≤ 11 uniformly at random. We always include
at least five filters to avoid queries with very high selectiv-
ity, on which all estimators perform similarly well. Next, f
distinct columns are drawn to place the filters. For columns
with domain size ≥ 10, the filter operator is sampled uni-
formly from {=,≤,≥}; for columns with small domains, the
equality operator is picked—the intention is to avoid placing
a range predicate on categoricals, which often have a low do-
main size. The filter literals are then chosen from a random
tuple sampled uniformly from the table, i.e., they follow the
data distribution. For example, a valid 5-filter query on
DMV is “(fuel type = GAS) ∧ (rev ind = N) ∧ (sco ind =
N)∧ (valid date ≥ 2018-03-23)∧ (color = BK)”. Overall, the
queries span a wide range of selectivities (Figure 4).

Accuracy metric. We report accuracy by the multiplica-
tive error [22, 26, 28] (also termed “Q-error”), the factor by
which an estimate differs from the actual cardinality:

Error := max(estimate, actual)/min(estimate, actual)

We lower bound the estimated and actual cardinalities at
1 to guard against division by zero. In line with prior
work [7, 26], we found that the multiplicative error is much
more informative than the relative error, as the latter does
not fairly penalize small cardinality estimates (which are
frequently the case for high-dimensional queries). Lastly we
report the errors in quantiles, with a particular focus at the
tail. Our results show that all estimators can achieve low
median (or mean) errors but with greatly varying perfor-
mance at the tail, indicating that mean/median metrics do
not accurately reflect the hard cases of the estimation task.

6.2 Estimation Accuracy
In summary, Tables 3 and 4 show that not only does Naru

match or exceed the best estimator across the board, it ex-
cels in the extreme tail of query difficulty—that is, worst-
case errors on low-selectivity queries. For these types of
queries, Naru achieves orders of magnitude better accuracy
than classical approaches, and up to 90× better tail behavior
than query-driven (supervised) methods.

The same Naru model is used to estimate all queries on a
dataset, showing the robustness of the model learned. We
now discuss these macrobenchmarks in more detail.

6.2.1 Results on DMV

Overall, Naru achieves the best accuracy and robustness
across the selectivity spectrum. In the tail, it outperforms
MHIST by 691×, DBMS-1 by 114×, un-tuned (tuned) MSCN
by 115× (33×), BayesNet by 70×, Sample by 47×, and KDE-
superv by 21×. We next discuss takeaways from Table 3.

8

Table 3: Estimation errors on DMV. Errors are grouped by true selectivities and shown in percentiles computed from 2,000 queries.

Estimator High ((2%, 100%]) Medium ((0.5%, 2%]) Low (≤ 0.5%)
Median 95th 99th Max Median 95th 99th Max Median 95th 99th Max

Indep 1.12 1.55 46.1 2566 1.25 46.6 1051 8 · 104 1.35 225 2231 2 · 104

Postgres 1.12 1.55 46.3 2608 1.25 45.5 1070 8 · 104 1.36 227 2287 2 · 104

DBMS-1 1.45 3.36 5.80 12.6 2.72 6.38 9.29 10.1 5.28 83.0 417 917
Sample 1.00 1.02 1.03 1.05 1.02 1.05 1.07 1.10 1.12 43.2 98.1 377
KDE 10.9 1502 1 · 104 2 · 105 48.0 2 · 104 9 · 104 2 · 105 38.0 3191 2 · 104 5 · 104

KDE-superv 1.40 3.81 4.91 13.3 1.53 4.36 8.12 16.9 1.95 30.0 98.0 175
MSCN-base 1.17 1.42 1.47 1.58 1.14 1.65 2.53 3.96 2.95 32.5 85.6 921
MSCN-0 16.8 92.4 195 285 8.89 80.4 344 471 4.79 67.1 169 6145
MSCN-10K 1.04 1.10 1.12 1.16 1.04 1.12 1.19 1.23 1.51 14.2 33.7 264
MHIST 1.70 2.65 4.11 9.20 1.65 6.00 15.1 21.1 2.81 70.3 352 5532
BayesNet 1.01 1.07 1.12 1.44 1.05 1.18 1.26 1.40 3.41 16.1 79 561

Naru-1000 1.01 1.03 1.05 1.28 1.01 1.06 1.15 1.27 1.03 1.44 2.51 8.00
Naru-2000 1.01 1.03 1.04 1.16 1.01 1.04 1.09 1.38 1.03 1.41 2.18 8.00

Table 4: Estimation errors on Conviva-A. Errors grouped by true selectivities and shown in percentiles computed from 2,000 queries.

Estimator High ((2%, 100%]) Medium ((0.5%, 2%]) Low (≤ 0.5%)
Median 95th 99th Max Median 95th 99th Max Median 95th 99th Max

DBMS-1 1.75 5.25 7.77 9.12 3.93 13.6 19.9 31.3 8.63 176 636 4737
Sample 1.02 1.06 1.09 1.11 1.04 1.14 1.18 1.23 1.18 49.3 218 696
KDE 105 2 · 105 5 · 105 8 · 105 347 6 · 104 8 · 104 8 · 104 224 1 · 104 2 · 104 2 · 104

KDE-superv 1.99 7.97 14.5 33.6 2.04 8.44 17.0 49.7 2.76 74.5 251 462
MSCN-base 1.14 1.27 1.36 1.48 1.15 1.55 2.26 57.7 2.05 20.3 84.1 370
MHIST 1.54 5.24 11.2 1 · 104 2.22 10.5 30.3 3 · 104 6.71 792 4170 8 · 104

BayesNet 1.15 1.75 2.05 2.70 1.31 2.70 4.95 47.6 1.67 14.8 78.0 998

Naru-1000 1.02 1.11 1.18 1.37 1.05 1.17 1.27 1.40 1.10 1.71 3.01 185
Naru-2000 1.02 1.10 1.16 1.28 1.05 1.17 1.27 1.38 1.09 1.66 3.00 58.0
Naru-4000 1.02 1.10 1.17 1.21 1.04 1.15 1.27 1.36 1.09 1.57 2.50 4.00

Independence assumptions lead to orders of mag-
nitude errors. Estimators that assume full or partial inde-
pendence between columns produce large errors, regardless
of query selectivity or how good per-column estimates are.
These include Indep, Postgres, and DBMS-1, whose tail er-
rors are in the 103 − 105× range. Naru’s model is powerful
enough to avoid this assumption, leading to better results.

MHIST outperforms Indep and Postgres by over an order
of magnitude. However, its performance is limited by the
linear partitioning and uniform spread assumptions.

BayesNet also does quite well, nearly matching supervised
approaches, but is still significantly outperformed by Naru
due to the former’s uses of lossy discretization and condi-
tional independence assumptions.

Worst-case errors are much harder to be robust
against. All estimators perform worse for low-selectivity
queries or at worst-case errors. For instance, in the high-
selectivity regime Postgres’s error is a reasonable 1.55× at
95th, but becomes 1682× worse at the maximum. Also,
Sample performs exceptionally well for high and medium
selectivity queries, but drops off considerably for low selec-
tivity queries where the sample has no hits. MSCN struggles
since its supervised objective requires more training data to
cover all possible low-selectivity queries. Naru yields much
lower (single-digit) errors at the tail, showing the robustness
that results from directly approximating the joint.

KDE struggles with high-dimensional data. KDE’s
errors are among the highest. The reason is that, the band-
width vector found is highly sub-optimal despite tunings,
due to (1) a large number of attributes in DMV, and (2)
discrete columns fundamentally do not work well with the
notion of “distance” in KDE [17]. The method must rely on
query feedback (KDE-superv) to find a good bandwidth.

MSCN heavily relies on its materialized samples
for accurate prediction. Across the spectrum, its accu-
racy closely approximates Sample. MSCN-10K has 3× bet-
ter tail accuracy than MSCN-base due to access to 10× more
samples, despite having the same network architecture and
trained on the same 100K queries. Both variants’ accuracies
drop off considerably for low-selectivity queries, since, when
there are no hits in the materialized sample, the model relies
solely on the query features to make “predictions”. MSCN-
0 which does not use materialized samples performs much
worse, obtaining a max error of 6145×.

6.2.2 Results on Conviva-A
Based on DMV results, we keep only the promising base-

lines for this dataset. Table 4 shows that Naru remains best-
in-class for a dataset with substantially different columns
and a much larger joint size.

For this dataset, most estimators produce larger errors.
This is because Conviva-A has a much larger joint space.
DBMS-1, MHIST, BayesNet, and KDE-superv exhibit 5×,
14×, 1.8×, and 2.6× worse max error than before respec-
tively. MSCN-base’s max error in the medium-selectivity
regime is also 14× worse. As a non-parametric method cov-
ering the full joint space, Sample remains a robust choice.

For Naru, since the sampler needs to cross more domains
and a much larger joint space, Naru-1000 becomes insuffi-
cient to provide single-digit error in all cases. However, a
modest scaling of the number of samples to 4K decreases
the worst-case error back to single-digit levels. This sug-
gests that the approximated joint is sufficiently accurate,
and that the key challenge lies in extracting its information.

9

1 2 3 4 5 6 7 8 9

Epoch

0.6

0.7

0.8
E

n
tr

o
p

y
G

a
p

(b
it

s)

5
15
25
35
45

M
a

x
E

rr
or

(a) DMV

2 6 10 14 18 22 26 30 34

Epoch

0.8

1.2

1.6

2.0

E
n

tr
o

p
y

G
a

p
(b

it
s)

101

102

M
a

x
E

rr
or

[l
o

g
]

(b) Conviva-A

Figure 5: Training time vs. quality (§6.4). Dotted lines show divergence from data; bars show max estimation errors.

100 101 102 103

Estimator Latency (ms) [log scale]

0.0
0.2
0.4
0.6
0.8
1.0

F
ra

ct
io

n

Postgres

KDE

DBMS-1

MSCN-base

Naru-1000

Naru-2000

MSCN-10K

Sample

(a) DMV

100 101 102

Estimator Latency (ms) [log scale]

0.0
0.2
0.4
0.6
0.8
1.0

F
ra

ct
io

n

KDE

MSCN-base

Naru-2000

Naru-4000

DBMS-1

Sample

(b) Conviva-A

Figure 6: Estimator latency (§6.5). Learning methods are run on GPU; other estimators are run on CPU (dashed lines).

6.3 Robustness to Out-of-Distribution Queries
Our experiments thus far have drawn the filter literals

(query centers) from the data. However, a strong estimator
must be robust to out-of-distribution (OOD) queries where
the literals are drawn from the entire joint domain, which
often result in no matching tuples. Table 5 shows results on
select estimators on 2K OOD queries on DMV, where 98%
have a true cardinality of zero. The supervised MSCN-10K
suffers greatly (e.g., median is now 23×, up from the 1.51×
in Table 3) because it was trained on a set of in-distribution
queries; at test time, out-of-distribution queries confuse the
net. KDE-superv, a sampling-based approach, finds no hits
in its sampled tuples, and therefore appropriately assigns
zero density mass for all queries.

Table 5: Robustness to OOD queries. Errors from 2,000 queries.

Estimator Median 95th 99th Max

MSCN-10K 23 96 151 417
KDE-superv 1.00 1.00 3.67 163

Sample 1.00 1.00 2.00 116
Naru-2000 1.00 1.00 1.26 4.00

Since Naru approximates the data distribution, it correctly
learns that out-of-distribution regions have little or no den-
sity mass, outperforming KDE by 40× and MSCN by 104×.

6.4 Training Time vs. Quality
Compared to supervised learning, Naru is efficient to train:

no past queries are required; we only need access to a uni-
form random stream of tuples from the relation. We also
find that, surprisingly, it only takes a few epochs of training
to obtain a sufficiently powerful Naru estimator.

Figure 5 shows how two quality metrics, entropy gap and
estimation error, change as training progresses. The metrics
are calculated after each epoch (one pass over the data) fin-
ishes. An epoch takes about 75 seconds and 50 seconds for

DMV and Conviva-A, respectively. The number of progres-
sive samples is set to 2K for DMV and 8K for Conviva-A.

Observe that Naru quickly converges to a high goodness-
of-fit both in terms of entropy gap and estimation quality.
For DMV where a larger Naru model is used, 1 epoch of
training suffices to produce the best estimation accuracy
compared to all baselines (Table 3, last column). For Con-
viva-A, 2 epochs yields the best-in-class quality and about
15 epochs yields the quality of single-digit max error.

6.5 Estimation Latency
Figure 6 shows Naru’s estimation latency against other

baselines. On both datasets Naru can finish estimation in
around 5-10ms on a GPU, which is faster than scanning
samples (Sample and MSCN) and is competitive with DBMS-
1. We note the caveat that latencies for Postgres and DBMS-
1 include producing an entire plan for each query.

Naive progressive sampling requires as many model for-
ward passes as the number of attributes in the relation.
With Naru’s wildcard-skipping optimization (§5.2), however,
we can skip the forward passes that generate distributions
for the wildcard columns. Hence, the number of forward
passes required is the number of non-wildcard columns in
each query. This effect manifests in the slightly slanted na-
ture of Naru’s CDF curves—queries that only touch a few
columns are faster to estimate than those with a larger num-
ber of columns. Latency tail is also well-behaved: on DMV,
Naru-1000’s median is at 6.4ms vs. max at 9.4ms; on Con-
viva-A, Naru-2000’s median is at 5.0ms vs. max at 9.7ms.

Naru’s estimation latency can be further minimized by
engineering. Naru’s sampler is written in Python code and
a general-purpose deep learning framework (PyTorch); the
resultant control logic overhead from interpretation can be
removed by using hand-optimized native code. Orthogonal
techniques such as half-precision, i.e., 32-bit floats quantized
into 16-bit floats, would shrink Naru’s compute cost by half.

10

0 2 4 6 8 10 12 14 16 18
Random Order Index

101

102

103

M
ax

E
rr

or
(1

0
ru

ns
)

Naru-2K (MADE) Naru-2K (ResMADE)

(a) DMV

0 2 4 6 8 10 12 14 16 18
Random Order Index

101

102

M
ax

E
rr

or
(1

0
ru

ns
)

Naru-4K (MADE) Naru-4K (ResMADE)

(b) Conviva-A

Figure 7: Variance of random orders. Each dataset’s 2000-query
workload is run 10 times; the maximum of these 10 max errors
are shown. Order indices sorted by descending max error.

Table 6: Larger model sizes yield lower entropy gap. Here we
only consider scaling the hidden units of a MADE model.

Architecture Size (MB) Entropy gap, 5 epochs

32× 32× 32× 32 0.6 4.23 bits per tuple
64× 64× 64× 64 1.1 2.25 bits per tuple

128× 128× 128× 128 2.7 1.01 bits per tuple
256× 256× 256× 256 3.8 0.84 bits per tuple

Table 7: Comparison of autoregressive building blocks (§4.3).
Max error calculated by running DMV’s 2000-query workload 10
times (Naru-2000). FLOPs is the number of floating point oper-
ations required per forward pass per input tuple.

Params FLOPs Ent. Gap Max Error

MADE 3.3M 6.7M 0.59 8.0×
ResMADE 3.1M 6.2M 0.56 8.0×

Transformer 2.8M 35.5M 0.54 8.2×

6.6 Variance Analysis
Effect of random orders. Figure 7 shows the estimation
variance of randomly sampled column orders. We sample
20 random orders and train a Naru model on each, varying
the autoregressive building block. The result shows that the
choice of ordering does affect estimation variance in the ex-
treme tail. However, we found that on 99%-tile or below,
almost all orderings can reach single-digit errors.

Effect of wildcard-skipping (§5.2) and heuristic or-
ders (§5.3). Figure 8 shows that the information-theoretic
orders have much lower variance than randomly sampled
ones. The left-to-right order (Natural) is also shown for
comparison. We also find that wildcard-skipping is criti-
cal in reducing max error variance by up to several orders
of magnitude (e.g., MutInfo’s max drops from 103 to < 10).

6.7 Autoregressive Model Choice and Sizing
In Table 6, we measure the relationship between model

size and entropy gap on Conviva-A. While larger model sizes
yield lower entropy gaps, Figure 5 shows that this can yield
diminishing returns in terms of accuracy.

Table 7 compares accuracy and (storage and computa-
tion) cost of three similarly sized autoregressive building
blocks. The results suggest that ResMADE and regular
MADE are preferable due to their efficiency. We expect
the Transformer—a more advanced architecture—to excel
on datasets of larger scale.

6.8 Understanding Estimation Performance
Naru’s accuracy depends critically on two factors: (1) the

accuracy of the density model; and (2) the effectiveness of

1 5 10 15 17
Max Errors, 10 runs

no w.s.
Natural
no w.s.

MutInfo
no w.s.

PMutInfo

(a) DMV

100 101 102 103

Max Errors, 10 runs

(b) Conviva-A

Figure 8: Wildcard-skipping and heuristic orders. These or-
ders have much lower variance than random orders. Ablation
of wildcard-skipping is shown. Distributions of 10 max errors are
plotted; whiskers denote min/max and bold bars denote medians.

progressive sampling. This section seeks to understand the
interplay between the two components and how each con-
tributes to estimation errors. We do this by running mi-
crobenchmarks against the Conviva-B dataset, which has
only 10K rows but has 100 columns for a total joint space of
10190. The small size of the dataset makes it possible to run
queries against an emulated oracle model with perfect accu-
racy by scanning the data. This allows us to isolate errors
introduced by density estimation vs. progressive sampling.

6.8.1 Robustness to Increasing Model Entropy Gap
One natural question is: how accurate does the density

model have to be? One metric of modeling accuracy is the
fraction of total probability mass assigned to observed data
tuples. For example, a randomly initialized model will as-
sign equal probability mass to all points in the joint space
of tuples. As training proceeds, it learns to assign higher
probability to tuples actually present in the relation. Un-
der the simplifying assumption that all relation tuples are
unique (as they are in Conviva-B), we can quantify this frac-
tion as follows. Suppose the model has an entropy gap of 2
bits; then, the fraction of probability mass assigned to the
relation, f , satisfies − log2 f = 2, which leads to f = 25%.

Figure 9 shows that Naru achieves the best performance
with a model entropy gap of 0-2 bits. A gap of lower than
0.5 bits does not substantially improve performance. This
means that for the best accuracy, the model must assign
between 25− 100% of the probability mass to the empirical
data distribution. Surprisingly, Naru still outperforms base-
lines with up to 10 bits of entropy gap, which corresponds to
less than ≈ 0.1% probability mass assigned. We hypothesize
that the range queries make such modeling errors less crit-
ical, because density errors of individual tuples could even
out when estimating the density of the region as a whole.

6.8.2 Robustness to Increasing Column Counts
While the datasets tested in macrobenchmarks have a

good number of columns, using Conviva-B we test how well
progressive sampling scales to 10× as many dimensions. Fig-
ure 10 shows that while the number of columns does signif-
icantly increase the variance of estimates, the number of
progressive samples required to mitigate this variance re-
mains tractable. A choice of 1000 sample paths produces
reasonable worst-case accuracies for up to 100 columns, and
10000 sample paths improves on that by a modest factor.

6.8.3 Robustness to Data Shifts
Lastly, we study how Naru reacts to data shifts. We par-

tition DMV by a date column into 5 parts. We then ingest
each partition in order, emulating the common practice of “1

11

0 0.5 2 5 10 20

Entropy Gap (bits/tuple)

100

101

102

M
a

x
E

rr
or

[l
o

g
sc

a
le

]
Naru-50

Naru-250

Naru-1000

Indep

Sample(1%)

Figure 9: Accuracy of Naru as an artificial entropy gap is added
to an oracle model for Conviva-B projected to the first 15 columns.
50 queries are drawn from the same distribution as in the mac-
robenchmarks. Naru has the best accuracy for an entropy gap of
less than 2 bits, though remains competitive up to a surprisingly
large gap of 10 bits. Variance of progressive sampling decreases
dramatically when moving from 50 to 250 to 1000 samples.

new partition per day”. Each estimator is built after seeing
the first partition. After a new ingest, we test the previously
built estimators on queries that touch all data ingested so
far. The same query generator as macrobenchmarks is used
where the filters are drawn from tuples in the first partition
(true selectivities computed on all data ingested so far).

Table 8: Robustness to data shifts. Errors from 200 queries.

Partitions Ingested 1 2 3 4 5

Naru, refreshed: max 2.0 2.0 2.0 2.0 2.0
90%-tile 1.20 1.14 1.12 1.14 1.15

Naru, stale: max 2.0 40.3 47.5 52.9 53.5
90%-tile 2.0 2.4 3.4 4.4 5.5

Table 8 shows the results of (1) Naru, no model updates,
(2) Naru, with gradient updates on each new ingest. The
model architecture is the same as in Table 3; 8,000 progres-
sive samples are used since we are interested in learning how
much imprecision or staleness presents in the model itself
and not the effectiveness of information extraction. The re-
sults show that, Naru is able to handle queries on new data
with reasonably good accuracy, even without having seen
the new partitions. The model has learned to capture the
underlying data correlations so the degradation is graceful.

7. RELATED WORK
Naru builds upon decades of rich research on selectivity

estimation and this section cannot replace comprehensive
surveys [5]. Below, we highlight the most related areas.

Joint approximation estimators. Multidimensional
histograms [16,33,37,38] can been seen as coarse approxima-
tions to the joint data distribution. Probabilistic relational
models (PRMs) [14] rely on a Bayes Net (conditional inde-
pendence DAG) to factor the joint into materialized con-
ditional probability tables. Tzoumas et al. [46] propose a
variant of PRMs optimized for practical use. Dependency-
based histograms [7] make partial or conditional indepen-
dence assumptions to keep the approximated joint tractable
(factors stored as histograms). Naru belongs to this fam-
ily and applies recent advances from the deep unsupervised
learning community. Naru does not make any independence
assumptions; it directly models the joint distribution and
lazily encodes all product-rule factors in a universal func-
tion approximator.

5 15 30 40 50 75 100

Number of Columns

100

101

102

M
a

x
E

rr
or

[l
o

g
sc

a
le

]

Naru-100

Naru-1000

Naru-10000

Indep

Sample(1%)

Figure 10: Accuracy of Naru as we add more columns from Con-
viva-B. We again use an oracle model (with 0 bits of entropy gap)
and 50 randomly generated queries. The number of predicates
covers at most 12 columns. The number of progressive sample
paths required to accurately query the model increases modestly
with the number of columns, but remains tractable even as the
joint data space reaches over 10190 (at 100 columns).

Query-driven estimators are supervised methods that
take advantage of past or training queries [3]. ISOMER [43]
and STHoles [1] are two representatives that adopt feedback
to improve histograms. LEO [45] and CardLearner [53] use
feedback to improve selectivity estimation of future queries.
Heimel et al. [17] propose query-driven KDEs; Kiefer et
al. [19] enhance them to handle joins. Supervised learning
regressors [10,22,29], some utilizing deep learning, have also
been proposed. Naru, an unsupervised data-driven synopsis,
is orthogonal to this family. Our evaluation shows that full
joint approximation yields accuracy much superior to two
supervised methods.

Machine learning in query optimizers. Naru can
be used as a drop-in replacement of selectivity estimator
used in ML-enhanced query optimizers. Ortiz et al. [34]
learns query representation to predict cardinalities, a re-
gression rather than our generative approach. Neo [31], a
learned query optimizer, approaches cardinality estimation
indirectly: embeddings for all attribute values are first pre-
trained; later, a network takes them as input and addition-
ally learns to correct or ignore signals from the embeddings.
This proposal, as well as reinforcement learning-based join
optimizers (DQ [25], ReJOIN [32]), may benefit from Naru’s
improved estimates.

8. CONCLUSION
We have shown that deep autoregressive models are highly

accurate selectivity estimators. They approximate the data
distribution without any independence assumptions. We de-
velop a Monte Carlo integration scheme and associated vari-
ance reduction techniques that efficiently handle challenging
range queries. To the best of our knowledge, these are novel
extensions to autoregressive models. Our estimator, Naru,
exceeds the state-of-the-art in accuracy over several families
of estimators.

Naru can be thought of as an unsupervised neural syn-
opsis. In contrast to supervised learning-based estimators,
Naru enjoys drastically more efficient training since there
is no need to execute queries to collect feedback—it only
needs to read the data. Learning directly from the under-
lying data allows Naru to answer a much more general set
of future queries and makes it inherently robust to shifts in
the query workload. Our approach is non-intrusive and can
serve as an opt-in component inside an optimizer.

12

9. REFERENCES
[1] N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: A

multidimensional workload-aware histogram. In
Proceedings of the 2001 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’01,
pages 211–222, New York, NY, USA, 2001. ACM.

[2] S. Chaudhuri, R. Motwani, and V. Narasayya. On
random sampling over joins. In ACM SIGMOD
Record, volume 28, pages 263–274. ACM, 1999.

[3] C. M. Chen and N. Roussopoulos. Adaptive selectivity
estimation using query feedback. In Proceedings of the
1994 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’94, pages 161–172,
New York, NY, USA, 1994. ACM.

[4] C. Chow and C. Liu. Approximating discrete
probability distributions with dependence trees. IEEE
transactions on Information Theory, 14(3):462–467,
1968.

[5] G. Cormode, M. Garofalakis, P. J. Haas, and
C. Jermaine. Synopses for massive data: Samples,
histograms, wavelets, sketches. Foundations and
Trends in Databases, 4(1-3):1–294, 2011.

[6] T. M. Cover and J. A. Thomas. Elements of
information theory. John Wiley & Sons, 2012.

[7] A. Deshpande, M. Garofalakis, and R. Rastogi.
Independence is good: Dependency-based histogram
synopses for high-dimensional data. ACM SIGMOD
Record, 30(2):199–210, 2001.

[8] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
BERT: Pre-training of deep bidirectional transformers
for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 4171–4186, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics.

[9] C. Durkan and C. Nash. Autoregressive energy
machines. In Proceedings of the 36th International
Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages
1735–1744, Long Beach, California, USA, 09–15 Jun
2019. PMLR.

[10] A. Dutt, C. Wang, A. Nazi, S. Kandula,
V. Narasayya, and S. Chaudhuri. Selectivity
estimation for range predicates using lightweight
models. PVLDB, 12(9):1044–1057, 2019.

[11] J. Friedman, T. Hastie, and R. Tibshirani. The
elements of statistical learning. Springer series in
statistics New York, 2001.

[12] M. Germain, K. Gregor, I. Murray, and H. Larochelle.
MADE: Masked autoencoder for distribution
estimation. In International Conference on Machine
Learning, pages 881–889, 2015.

[13] L. Getoor, N. Friedman, D. Koller, and B. Taskar.
Learning probabilistic models of relational structure.
In ICML, volume 1, pages 170–177, 2001.

[14] L. Getoor, B. Taskar, and D. Koller. Selectivity
estimation using probabilistic models. In ACM
SIGMOD Record, volume 30, pages 461–472. ACM,
2001.

[15] G. Grimmett, D. Stirzaker, et al. Probability and
random processes. Oxford university press, 2001.

[16] D. Gunopulos, G. Kollios, V. J. Tsotras, and
C. Domeniconi. Selectivity estimators for
multidimensional range queries over real attributes.
The VLDB Journal, 14(2):137–154, 2005.

[17] M. Heimel, M. Kiefer, and V. Markl. Self-tuning,
gpu-accelerated kernel density models for
multidimensional selectivity estimation. In Proceedings
of the 2015 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’15, pages
1477–1492, New York, NY, USA, 2015. ACM.

[18] R. Kaushik, J. F. Naughton, R. Ramakrishnan, and
V. T. Chakravarthy. Synopses for query optimization:
A space-complexity perspective. volume 30, pages
1102–1127, New York, NY, USA, Dec. 2005. ACM.

[19] M. Kiefer, M. Heimel, S. Breß, and V. Markl.
Estimating join selectivities using
bandwidth-optimized kernel density models. PVLDB,
10(13):2085–2096, 2017.

[20] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. In 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015.

[21] A. Kipf. Github repository, learnedcardinalities.
github.com/andreaskipf/learnedcardinalities,
2019. [Online; accessed March, 2019].

[22] A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and
A. Kemper. Learned cardinalities: Estimating
correlated joins with deep learning. In CIDR 2019, 9th
Biennial Conference on Innovative Data Systems
Research, Asilomar, CA, USA, January 13-16, 2019.

[23] D. Koller and N. Friedman. Probabilistic graphical
models: principles and techniques. MIT press, 2009.

[24] F. Korn, T. Johnson, and H. Jagadish. Range
selectivity estimation for continuous attributes. In
Proceedings. Eleventh International Conference on
Scientific and Statistical Database Management, pages
244–253. IEEE, 1999.

[25] S. Krishnan, Z. Yang, K. Goldberg, J. Hellerstein, and
I. Stoica. Learning to optimize join queries with deep
reinforcement learning. arXiv preprint
arXiv:1808.03196, 2018.

[26] V. Leis, A. Gubichev, A. Mirchev, P. Boncz,
A. Kemper, and T. Neumann. How good are query
optimizers, really? PVLDB, 9(3):204–215, 2015.

[27] V. Leis, B. Radke, A. Gubichev, A. Kemper, and
T. Neumann. Cardinality estimation done right:
Index-based join sampling. In CIDR, 2017.

[28] V. Leis, B. Radke, A. Gubichev, A. Mirchev,
P. Boncz, A. Kemper, and T. Neumann. Query
optimization through the looking glass, and what we
found running the join order benchmark. The VLDB
Journal, pages 1–26, 2018.

[29] H. Liu, M. Xu, Z. Yu, V. Corvinelli, and C. Zuzarte.
Cardinality estimation using neural networks. In
Proceedings of the 25th Annual International
Conference on Computer Science and Software
Engineering, pages 53–59. IBM Corp., 2015.

[30] M. Heimel. Bitbucket repository, feedback-kde.
bitbucket.org/mheimel/feedback-kde, 2019.
[Online; accessed March, 2019].

[31] R. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh,

13

github.com/andreaskipf/learnedcardinalities
bitbucket.org/mheimel/feedback-kde

T. Kraska, O. Papaemmanouil, and N. Tatbul. Neo: A
learned query optimizer. PVLDB, 12(11):1705–1718,
2019.

[32] R. Marcus and O. Papaemmanouil. Deep
reinforcement learning for join order enumeration. In
Proceedings of the First International Workshop on
Exploiting Artificial Intelligence Techniques for Data
Management, aiDM’18, pages 3:1–3:4, New York, NY,
USA, 2018. ACM.

[33] M. Muralikrishna and D. J. DeWitt. Equi-depth
multidimensional histograms. In ACM SIGMOD
Record, volume 17, pages 28–36. ACM, 1988.

[34] J. Ortiz, M. Balazinska, J. Gehrke, and S. S. Keerthi.
Learning state representations for query optimization
with deep reinforcement learning. In Proceedings of
the Second Workshop on Data Management for
End-To-End Machine Learning, DEEM’18, pages
4:1–4:4, New York, NY, USA, 2018. ACM.

[35] Y. Park, S. Zhong, and B. Mozafari. Quicksel: Quick
selectivity learning with mixture models. arXiv
preprint arXiv:1812.10568, 2018.

[36] M. Perron, Z. Shang, T. Kraska, and M. Stonebraker.
How I learned to stop worrying and love
re-optimization. In 35th IEEE International
Conference on Data Engineering, ICDE 2019, 2019.

[37] V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J.
Shekita. Improved histograms for selectivity
estimation of range predicates. In Proceedings of the
1996 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’96, pages 294–305,
New York, NY, USA, 1996. ACM.

[38] V. Poosala and Y. E. Ioannidis. Selectivity estimation
without the attribute value independence assumption.
In VLDB, volume 97, pages 486–495, 1997.

[39] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
and I. Sutskever. Language models are unsupervised
multitask learners. URL https://openai.
com/blog/better-language-models, 2019.

[40] T. Salimans, A. Karpathy, X. Chen, and D. P.
Kingma. PixelCNN++: Improving the pixelcnn with
discretized logistic mixture likelihood and other
modifications. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track
Proceedings, 2017.

[41] D. W. Scott. Multivariate Density Estimation:
Theory, Practice, and Visualization. John Wiley &
Sons, Inc., 1992.

[42] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, and T. G. Price. Access path selection in
a relational database management system. In
Proceedings of the 1979 ACM SIGMOD international
conference on Management of data, pages 23–34.
ACM, 1979.

[43] U. Srivastava, P. J. Haas, V. Markl, M. Kutsch, and
T. M. Tran. ISOMER: Consistent histogram
construction using query feedback. In 22nd
International Conference on Data Engineering
(ICDE’06), pages 39–39. IEEE, 2006.

[44] State of New York. Vehicle, snowmobile, and boat
registrations. catalog.data.gov/dataset/vehicle-
snowmobile-and-boat-registrations, 2019. [Online;

accessed March 1st, 2019].

[45] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil.
LEO-DB2’s learning optimizer. In VLDB, volume 1,
pages 19–28, 2001.

[46] K. Tzoumas, A. Deshpande, and C. S. Jensen.
Lightweight graphical models for selectivity estimation
without independence assumptions. PVLDB,
4(11):852–863, 2011.

[47] B. Uria, I. Murray, and H. Larochelle. A deep and
tractable density estimator. In Proceedings of the 31st
International Conference on International Conference
on Machine Learning - Volume 32, ICML’14, pages
I–467–I–475. JMLR.org, 2014.

[48] A. Van den Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior,
and K. Kavukcuoglu. WaveNet: A generative model
for raw audio. arXiv preprint arXiv:1609.03499, 2016.

[49] A. Van den Oord, N. Kalchbrenner, L. Espeholt,
O. Vinyals, A. Graves, et al. Conditional image
generation with pixelcnn decoders. In Advances in
neural information processing systems, pages
4790–4798, 2016.

[50] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008,
2017.

[51] T. L. Veldhuizen. Triejoin: A simple, worst-case
optimal join algorithm. In ICDT, 2014.

[52] S. D. Viglas, J. F. Naughton, and J. Burger.
Maximizing the output rate of multi-way join queries
over streaming information sources. In Proceedings of
the 29th international conference on Very large data
bases-Volume 29, pages 285–296. VLDB Endowment,
2003.

[53] C. Wu, A. Jindal, S. Amizadeh, H. Patel, W. Le,
S. Qiao, and S. Rao. Towards a learning optimizer for
shared clouds. PVLDB, 12(3):210–222, Nov. 2018.

[54] Z. Yang, Z. Dai, Y. Yang, J. Carbonell,
R. Salakhutdinov, and Q. V. Le. Xlnet: Generalized
autoregressive pretraining for language understanding.
arXiv preprint arXiv:1906.08237, 2019.

14

catalog.data.gov/dataset/vehicle-snowmobile-and-boat-registrations
catalog.data.gov/dataset/vehicle-snowmobile-and-boat-registrations

	Introduction
	Problem Formulation
	Approximating the Joint via Factorization
	Problem Statement

	Deep Autoregressive Models
	Overview
	Autoregressive Models for Relational Data

	Estimator Construction
	Workflow
	Encoding and Decoding Strategies
	Model Choice

	Querying the Estimator
	Range Queries via Progressive Sampling
	Reducing Variance: Wildcard-Skipping
	Reducing Variance: Column Ordering

	Evaluation
	Experimental Setup
	Datasets
	Estimators
	Workloads

	Estimation Accuracy
	Results on DMV
	Results on Conviva-A

	Robustness to Out-of-Distribution Queries
	Training Time vs. Quality
	Estimation Latency
	Variance Analysis
	Autoregressive Model Choice and Sizing
	Understanding Estimation Performance
	Robustness to Increasing Model Entropy Gap
	Robustness to Increasing Column Counts
	Robustness to Data Shifts

	Related Work
	Conclusion
	References

