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ABSTRACT
R is a popular statistical programming language with a number of
extensions that support data processing and machine learning tasks.
However, interactive data analysis in R is usually limited as the R
runtime is single threaded and can only process data sets that fit in
a single machine’s memory. We present SparkR, an R package that
provides a frontend to Apache Spark and uses Spark’s distributed
computation engine to enable large scale data analysis from the R
shell. We describe the main design goals of SparkR, discuss how
the high-level DataFrame API enables scalable computation and
present some of the key details of our implementation.
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1. INTRODUCTION
Recent trends in big data analytics indicate the growing need for

interactive analysis of large datasets. In response to this trend, a
number of academic [12, 32, 8] and commercial systems [18] have
been developed to support such use cases. However, data science
surveys [1] show that in addition to relational query processing,
data scientists often use tools like R to perform more advanced
analysis on data. R is particularly popular as it provides support for
structured data processing using data frames and includes a number
of packages for statistical analysis and visualization.

However, data analysis using R is limited by the amount of mem-
ory available on a single machine and further as R is single threaded
it is often impractical to use R on large datasets. Prior research has
addressed some of these limitations through better I/O support [35],
integration with Hadoop [13, 19] and by designing distributed R
runtimes [28] that can be integrated with DBMS engines [25].

In this paper, we look at how we can scale R programs while
making it easy to use and deploy across a number of workloads.
We present SparkR: an R frontend for Apache Spark, a widely de-
ployed [2] cluster computing engine. There are a number of bene-
fits to designing an R frontend that is tightly integrated with Spark.
Library Support: The Spark project contains libraries for running
SQL queries [10], distributed machine learning [23], graph analyt-
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ics [16] and SparkR can reuse well-tested, distributed implementa-
tions for these domains.
Data Sources: Further, Spark SQL’s data sources API provides
support for reading input from a variety of systems including
HDFS, HBase, Cassandra and a number of formats like JSON, Par-
quet, etc. Integrating with the data source API enables R users to
directly process data sets from any of these data sources.
Performance Improvements: As opposed to a new distributed en-
gine, SparkR can inherit all of the optimizations made to the Spark
computation engine in terms of task scheduling, code generation,
memory management [3], etc.

SparkR is built as an R package and requires no changes to
R. The central component of SparkR is a distributed data frame
that enables structured data processing with a syntax familiar to R
users [31](Figure 1). To improve performance over large datasets,
SparkR performs lazy evaluation on data frame operations and uses
Spark’s relational query optimizer [10] to optimize execution.

SparkR was initially developed at the AMPLab, UC Berkeley
and has been a part of the Apache Spark project for the past eight
months. SparkR is an active project with over 40 contributors
and growing adoption [6, 7]. We next outline the design goals of
SparkR and key details of our implementation. Following that we
outline some of the efforts in progress to improve SparkR.

2. BACKGROUND
In this section we first provide a brief overview of Spark and R,

the two main systems that are used to develop SparkR. We then
discuss common application patterns used by R programmers for
large scale data processing.

2.1 Apache Spark
Apache Spark [2] is a general purpose engine for large scale data

processing. The Spark project first introduced Resilient Distributed
Datasets (RDD) [34], an API for fault tolerant computation in a
cluster computing environment. More recently a number of higher
level APIs have been developed in Spark. These include ML-
lib [23], a library for large scale machine learning, GraphX [16], a
library for processing large graphs and SparkSQL [10] a SQL API
for analytical queries. Since the above libraries are closely inte-
grated with the core API, Spark enables complex workflows where
say SQL queries can be used to pre-process data and the results
can then be analyzed using advanced machine learning algorithms.
SparkSQL also includes Catalyst [10], a distributed query opti-
mizer that improves performance by generating the optimal physi-
cal plan for a given query. More recent efforts [9] have looked at
developing a high level distributed DataFrame API for structured
data processing. As queries on DataFrames are executed using the
SparkSQL query optimizer, DataFrames provide both better usabil-



ity and performance compared to using RDDs [4]. We next discuss
some of the important characteristics of data frames in the context
of the R programming language.

2.2 R Project for Statistical Computing
The R project [26] consists of a programming language, an inter-

active development environment and a set of statistical computing
libraries. R is an interpreted language and provides support for
common constructs such as conditional execution (if) and loops
(for, while, repeat) etc. R also includes extensive support for
numerical computing, with data types for vectors, matrices, arrays
and libraries for performing numerical operations.
Data frames in R: In addition to numerical computing, R pro-
vides support for structured data processing through data frames.
Data frames are tabular data structures where each column con-
sists of elements of a particular type (e.g., numerical or categori-
cal). Data frames provide an easy syntax for filtering, summarizing
data and packages like dplyr [31] have further simplified express-
ing complex data manipulation tasks on data frames. Specifically,
dplyr provides a small number of verbs for data manipulation and
these include relational operations like selection, projection, aggre-
gations and joins. Given its popularity among users, the concept of
data frames has been adopted by other languages like Pandas [21]
for Python etc. Next, we look at some of the common workflows of
data scientists who use R as their primary programming language
and motivate our design for SparkR based on these workflows.

2.3 Application Patterns
Big Data, Small Learning: In this pattern, users typically start
with a large dataset that is stored as a JSON or CSV file. Data anal-
ysis begins by joining the required datasets and users then perform
data cleaning operations to remove invalid rows or columns. Fol-
lowing this users typically aggregate or sample their data and this
step reduces the size of the dataset. The pre-processed data is then
used for building models or performing other statistical tasks.
Partition Aggregate: Partition aggregate workflows are useful for
a number of statistical applications like ensemble learning, parame-
ter tuning or bootstrap aggregation. In these cases the user typically
has a particular function that needs to be executed in parallel across
different partitions of the input dataset and the results from each
partition are then combined using a aggregation function. Addi-
tionally in some cases the input data could be small, but the same
data is evaluated with a large number of parameter values.
Large Scale Machine Learning: Finally for some applications
users run machine learning algorithms on large datasets. In such
scenarios, the data is typically pre-processed to generate features
and then the training features, labels are given as input to a ma-
chine learning algorithm to fit a model. The model being fit is usu-
ally much smaller in size compared to the input data and the model
is then used to serve predictions.

We next present SparkR DataFrames and discuss how they can
be used to address the above use cases.

3. DESIGN
In this section we present some of the design choices involved

in building SparkR. We first present details about the DataFrames
API and then present an overview of SparkR’s architecture.

3.1 SparkR DataFrames API
The central component of SparkR is a distributed data frame im-

plemented on top of Spark. SparkR DataFrames have an API simi-
lar to dplyr or local R data frames, but scale to large datasets using
Spark’s execution engine and relational query optimizer [10].

1 # Load the flights CSV file using ‘read.df‘
2 df <- read.df(sqlContext, "./nycflights13.csv",
3 "com.databricks.spark.csv")
4

5 # Select flights from JFK.
6 jfk_flights <- filter(df, df$origin == "JFK")
7

8 # Group and aggregate flights to each destination.
9 dest_flights <- agg(

10 groupBy(jfk_flights, jfk_flights$dest),
11 count = n(jfk_flights$dest))
12

13 # Running SQL Queries
14 registerTempTable(df, "table")
15 training <- sql(sqlContext,
16 "SELECT distance, depDelay, arrDelay FROM table")

Figure 1: Example of the SparkR DataFrame API

1 dest_flights <- filter(df, df$origin == "JFK") %>%
2 groupBy(df$dest) %>%
3 summarize(count = n(df$dest))

Figure 2: Chaining DataFrame operators in SparkR

DataFrame Operators: SparkR’s DataFrame supports a number
of methods to read input and perform structured data analysis. As
shown in Figure 1, SparkR’s read.df method integrates with
Spark’s data source API and this enables users to load data from
systems like HBase, Cassandra etc. Having loaded the data, users
are then able to use a familiar syntax for performing relational
operations like selections, projections, aggregations and joins
(lines 6–11). Further, SparkR supports more than 100 pre-defined
functions on DataFrames including string manipulation methods,
statistical functions and date-time operations. Users can also
execute SQL queries directly on SparkR DataFrames using the
sql command (lines 15–16). SparkR also makes it easy for users
to chain commands using existing R libraries [11] as shown in
Figure 2. Finally, SparkR DataFrames can be converted to a local
R data frame using the collect operator and this is useful for
the big data, small learning scenarios described earlier.

Optimizations: One of the main advantages of the high-level
DataFrame API is that we can tightly integrate the R API with the
optimized SQL execution engine in Spark. This means that even
though users write their code in R, we do not incur overheads of
running interpreted R code and can instead achieve the same per-
formance as using Scala or SQL. For example, Figure 4 compares
the performance of running group-by aggregation on 10 million in-
teger pairs on a single machine using Spark with R, Python and
Scala. From the figure we can see that SparkR’s performance is
similar to that of Scala / Python and this shows the benefits of sep-
arating the logical specification in R from the physical execution.

3.2 Architecture
SparkR’s architecture consists of two main components as shown

in Figure 3: an R to JVM binding on the driver that allows R pro-
grams to submit jobs to a Spark cluster and support for running R
on the Spark executors. We discuss both these components below.

3.2.1 Bridging R and JVM
One of the key challenges in implementing SparkR is having

support for invoking Spark functions on a JVM from R. The main
requirements we need to satisfy here include (a) a flexible approach
where the JVM driver process could be launched independently by
say a cluster manager like YARN (b) cross-platform support on
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Windows, Linux, etc. (c) a lightweight solution that does not make
it cumbersome to install SparkR. While there are some existing
packages which support starting an in-process JVM [27] we found
that these methods do not meet all our requirements.

Thus we developed a new socket-based SparkR internal API that
can be used to invoke functions on the JVM from R. Our high level
design is inspired by existing RPC or RMI-based systems [29] and
we introduce a new SparkR JVM backend that listens on a Netty-
based socket server. Our main reason for using sockets is that they
are supported across platforms (in both Java and R) and are avail-
able without using any external libraries in both languages. As most
of the messages being passed are control messages, the cost of us-
ing sockets as compared other in-process communication methods
is not very high.

There are two kinds of RPCs we support in the SparkR JVM
backend: method invocation and creating new objects. Method in-
vocations are called using a reference to an existing Java object (or
class name for static methods) and a list of arguments to be passed
on to the method. The arguments are serialized using our custom
wire format which is then deserialized on the JVM side. We then
use Java reflection to invoke the appropriate method. In order to
create objects, we use a special method name init and then sim-
ilarly invoke the appropriate constructor based on the provided ar-
guments. Finally, we use a new R class ’jobj’ that refers to a Java
object existing in the backend. These references are tracked on the
Java side and are automatically garbage collected when they go out
of scope on the R side.

3.2.2 Spawning R workers
The second part of SparkR’s design consists of support to launch

R processes on Spark executor machines. Our initial approach here
was to fork an R process each time we need to run an R function.
This is expensive because there are fixed overheads in launching the

1 # Query 1
2 # Top-5 destinations for flights departing from JFK.
3 jfk_flights <- filter(flights, flights$Origin == "JFK")
4 head(agg(group_by(jfk_flights, jfk_flights$Dest),
5 count = n(jfk_flights$Dest)), 5L)
6

7 # Query 2
8 # Calculate the average delay across all flights.
9 collect(summarize(flights,

10 avg\_delay = mean(flights$DepDelay)))
11

12 # Query 3
13 # Count the number of distinct flight numbers.
14 count(distinct(select(flights, flights$TailNum)))

Figure 7: Queries used for evaluation with the flights dataset

R process and in transferring the necessary inputs such as the Spark
broadcast variables, input data, etc. We made two optimizations
which reduce this overhead significantly. First, we implemented
support for coalescing R operations which lets us combine a num-
ber of R functions that need to be run. This is similar to operator
pipelining used in database execution engines. Second, we added
support for having a daemon R process that lives throughout the
lifetime of a Spark job and manages the worker R processes using
the mcfork feature in parallel package [26]. These optimiza-
tions both reduce the fixed overhead and the number of times we
invoke an R process and help lower the end-to-end latency.

4. EVALUATION
In this section we evaluate some of our design choices described

in the previous sections and also study how SparkR scales as we
use more machines. The dataset we use in this section is the air-
line on-time performance dataset1 that is used to evaluate existing
R packages like dplyr [30]. This dataset contains arrival data for
flights in USA and includes information such as departure and ar-
rival delays, origin and destination airports etc. We use data across
six years (2009-2014) and overall our input has 37.27M rows and
110 columns. The queries we use to evaluate SparkR are listed in
Figure 7. The queries make use of filtering, aggregation and sorting
and are representative of interactive queries used by R users. We
use a cluster of 32 r3.xlarge machines on Amazon EC2 for our
evaluation. Each machine consists of 2 physical cores, 30GB of
memory and 80GB of SSD storage. All experiments were also run
using Apache Spark 1.6.0 and we used the spark-csv2 package
for reading our input.

4.1 Strong Scaling
We first study the scaling behavior of SparkR by executing the

three queries in Figure 7 and varying the number of cores used. In
this experiment, the input data is directly processed from HDFS
and not cached in memory. The time taken for each query as we
vary the number of cores from 8 to 64 is shown in Figure 5. From
the figure we can see that SparkR achieves near-linear scaling with
the time taken reducing from around 115 seconds with 8 cores to
around 20 seconds with 64 cores. However waiting for 20 seconds
is often sub-optimal for interactive queries and we next see how
caching data in memory can improve performance.

4.2 Importance of Caching
For studying the benefits of caching the input table in memory

we fix the number of cores used as 64 and measure the time taken
1http://www.transtats.bts.gov/Tables.asp?DB_ID=120
2http://github.com/databricks/spark-csv
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1 # Train a GLM model
2 model <- glm(arrDelay ~ depDelay + distance,
3 family = "gaussian", data = training)
4

5 # Print model summary
6 summary(model)
7

8 # Compute predictions using model
9 preds <- predict(model, training)

Figure 9: Building Generalized Linear Models in SparkR

by each query when the input data is cached. Results from this
experiment are shown in Figure 6. We see that caching the data
can improve performance by 10x to 30x for this workload. These
results are in line with previous studies [34, 10] that measured the
importance of caching in Spark. We would like to note that the ben-
efits here come not only from using faster storage media, but also
from avoiding CPU time in decompressing data and parsing CSV
files. Finally, we can see that caching helps us achieve low laten-
cies (less than 3 seconds) that make SparkR suitable for interactive
query processing from the R shell.

4.3 Overhead of R-JVM binding
We next evaluate the overhead of using our socket-based R to

JVM bridge discussed in Section 3.2.1. To do this we use query
1 from Figure 7 and run the query with both caching enabled and
disabled on 64 cores. Using the performance metrics exported by
Spark, we compute the time taken to run distributed computation
and the time spent in the R-JVM bridge. In Figure 8, we see that the
R-JVM bridge adds a constant overhead around 300 milliseconds
irrespective of whether the data is cached or not. This overhead
includes the time spent in serializing the query and in deserializing
the results after it has been computed. For interactive query pro-
cessing we find having an overhead of a few hundred milliseconds
does not affect user experience. However, as the amount of data
shipped between R and JVM increases we find that the overheads
become more significant and we are exploring better serialization
techniques in the R-JVM bridge to improve this.

5. ONGOING WORK
We are continuing work on SparkR in many areas to improve

performance and enable more use cases. The two main areas we
discuss here relate to large scale machine learning by integration
with MLlib [23] and supporting partition aggregate workflows us-
ing user-defined functions (UDFs).

5.1 Large Scale Machine Learning
R includes support for a number of machine learning algorithms

through the default stats package and other optional packages
like glmnet [14], cluster [20] etc. The machine learning algo-
rithms typically operate directly on data frames and use C or For-
tran linkages for efficient implementations. One of the most widely
used machine learning functions in R is the glm method that fits
Generalized Linear Models. The glm method in R lets users spec-
ify the modeling of a response variable in a compact symbolic form
using formulas. For example, the formula y ∼ a + b indicates the
response y is modeled linearly by variables a and b. glm also lets
users specify the loss function to use and can thus be to used to im-
plement linear regression, logistic regression etc. The glm method
returns a model trained using the input data and users typically use
the summary function in R to print a number of statistics com-
puted about the model.

To support large scale distributed machine learning in SparkR,
we are working on integrating Spark’s MLlib API with SparkR
DataFrames. Our first focus is glm and to provide an intuitive
interface for R users, we extend R’s native methods for fitting and
evaluating models as shown in Figure 9. We support a subset of the
R formula operators in SparkR. These include the + (inclusion), −
(exclusion), : (interactions) and intercept operators. SparkR imple-
ments the interpretation of R model formulas as an MLlib [23] fea-
ture transformer and this integrates with the ML Pipelines API [22].
This design also enables the same RFormula transformer to be used
from Python, Scala and thereby enables an R-like succinct syntax
for GLMs across different Spark APIs.

We are also working on implementing support for model sum-
maries in SparkR to compute (a) minimum and maximum deviance
residuals of the estimation (b) the coefficient values for the es-
timation (c) the estimated standard errors, t-values and p-values.
Currently we have implemented these metrics for Gaussian GLMs
trained using weighted least squares and we are working towards
extending support for such metrics across different different fam-
ilies (Poisson, Gamma etc.) and link functions (logit, probit etc.)
using iteratively re-weighted least squares (IRWLS).

5.2 User Defined Functions
To support the partition aggregate usage pattern discussed be-

fore, we are working on providing support for running user-defined
functions (UDFs) in parallel. Spark supports UDFs written in
Scala, Python and these APIs allow UDFs to run on each row of
the input DataFrame. However, a number of R packages operate



on local R data frames and it would be more user-friendly to sup-
port UDFs where R users can directly make use of these packages.
In SparkR we plan to support UDFs that operate on each partition
of the distributed DataFrame and these functions will in turn return
local R columnar data frames that will be then converted into the
corresponding format in the JVM.

In addition to the above UDF-based API, we find that for some
use cases like parameter tuning, the input dataset is small but there
are a number of parameter values that need to be evaluated in par-
allel. To support such workflows we are working on a parallel exe-
cution API, where we take in a local list, a function to be executed
and run the function for each element of the local list in one core
in the cluster. Finally one of the main features that we aim to sup-
port with UDFs is closure capture or support for users to refer to
external global variables inside their UDFs. We plan to implement
this using R’s support for reflection and one of the challenges here
is to ensure that we only capture the necessary variables to avoid
performance overheads.

5.3 Efficient Data Sharing
One of the main overheads when executing UDFs in SparkR is

the time spent serializing input for the UDF from the JVM and then
deserialzing it in R. This process is also repeated for the data output
from the UDF and thus adds significant overhead to the execution
time. Recent memory management improvements [3] have intro-
duced support for off heap storage in Spark and we plan to investi-
gate techniques to use off heap storage for sharing data efficiently
between the JVM and R. One of the key challenges here is to de-
velop a storage format that can be parsed easily in both languages.
In addition to the serialization benefits, off heap data sharing can
help us lower the memory overhead by reducing the number of data
copies required.

6. RELATED WORK
A number of academic (Ricardo [13], RHIPE [17], RABID [19])

and commercial (RHadoop [5], BigR [33]) projects have looked
at integrating R with Apache Hadoop. SparkR follows a similar
approach but inherits the functionality [23] and performance [3]
benefits of using Spark as the execution engine. The high level
DataFrame API in SparkR is inspired by data frames in R [26],
dplyr [31] and pandas [21]. Further, SparkR’s data sources inte-
gration is similar to pluggable backends supported by dplyr. Un-
like other data frame implementations, SparkR uses lazy evalua-
tion and Spark’s relational optimizer to improve performance for
distributed computations. Finally, a number of projects like Dis-
tributedR [25], SciDB [24], SystemML [15] have looked at scaling
array or matrix-based computations in R. In SparkR, we propose
a high-level DataFrame API for structured data processing and in-
tegrate this with a distributed machine learning library to provide
support for advanced analytics.

7. CONCLUSION
In summary, SparkR provides an R frontend to Apache Spark

and allows users to run large scale data analysis using Spark’s dis-
tributed computation engine. SparkR has been a part of the Apache
Spark project since the 1.4.0 release and all of the functionality
described in this work is open source. SparkR can be downloaded
from http://spark.apache.org.
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